Nuprl Lemma : comparison-trans

[T:Type]. ∀cmp:comparison(T). Trans(T;x,y.0 ≤ (cmp y))


Proof




Definitions occuring in Statement :  comparison: comparison(T) trans: Trans(T;x,y.E[x; y]) uall: [x:A]. B[x] le: A ≤ B all: x:A. B[x] apply: a natural_number: $n universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] trans: Trans(T;x,y.E[x; y]) implies:  Q comparison: comparison(T) sq_stable: SqStable(P) and: P ∧ Q squash: T prop: le: A ≤ B not: ¬A false: False guard: {T}
Lemmas referenced :  less_than'_wf comparison_wf le_wf sq_stable__le
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation sqequalHypSubstitution setElimination thin rename lemma_by_obid isectElimination natural_numberEquality applyEquality hypothesisEquality hypothesis independent_functionElimination productElimination sqequalRule imageMemberEquality baseClosed imageElimination dependent_functionElimination lambdaEquality independent_pairEquality voidElimination axiomEquality equalityTransitivity equalitySymmetry because_Cache universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}cmp:comparison(T).  Trans(T;x,y.0  \mleq{}  (cmp  x  y))



Date html generated: 2016_05_14-PM-02_38_08
Last ObjectModification: 2016_01_15-AM-07_42_07

Theory : list_1


Home Index