Nuprl Lemma : concat_iseg

[T:Type]. ∀ll1,ll2:T List List.  (ll1 ≤ ll2  concat(ll1) ≤ concat(ll2))


Proof




Definitions occuring in Statement :  iseg: l1 ≤ l2 concat: concat(ll) list: List uall: [x:A]. B[x] all: x:A. B[x] implies:  Q universe: Type
Definitions unfolded in proof :  iseg: l1 ≤ l2 uall: [x:A]. B[x] all: x:A. B[x] implies:  Q exists: x:A. B[x] member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s] top: Top
Lemmas referenced :  exists_wf list_wf equal_wf concat_wf append_wf concat_append
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation sqequalHypSubstitution productElimination thin cut hypothesis hyp_replacement equalitySymmetry Error :applyLambdaEquality,  introduction extract_by_obid isectElimination cumulativity hypothesisEquality lambdaEquality universeEquality isect_memberEquality voidElimination voidEquality dependent_pairFormation because_Cache

Latex:
\mforall{}[T:Type].  \mforall{}ll1,ll2:T  List  List.    (ll1  \mleq{}  ll2  {}\mRightarrow{}  concat(ll1)  \mleq{}  concat(ll2))



Date html generated: 2016_10_21-AM-10_35_04
Last ObjectModification: 2016_07_12-AM-05_46_12

Theory : list_1


Home Index