Nuprl Lemma : concat_append

[a,b:Top].  (concat(a b) concat(a) concat(b))


Proof




Definitions occuring in Statement :  concat: concat(ll) append: as bs uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T append: as bs concat: concat(ll) reduce: reduce(f;k;as) so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a strict1: strict1(F) and: P ∧ Q all: x:A. B[x] implies:  Q list_ind: list_ind has-value: (a)↓ prop: or: P ∨ Q squash: T guard: {T} so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] top: Top
Lemmas referenced :  append_assoc concat-cons top_wf list_ind_nil_lemma sqle_wf_base is-exception_wf base_wf has-value_wf_base sqequal-list_ind
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule thin lemma_by_obid sqequalHypSubstitution isectElimination baseClosed independent_isectElimination independent_pairFormation lambdaFormation callbyvalueCallbyvalue hypothesis callbyvalueReduce baseApply closedConclusion hypothesisEquality callbyvalueExceptionCases inlFormation imageMemberEquality imageElimination exceptionSqequal inrFormation because_Cache dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalAxiom divergentSqle sqleRule sqleReflexivity

Latex:
\mforall{}[a,b:Top].    (concat(a  @  b)  \msim{}  concat(a)  @  concat(b))



Date html generated: 2016_05_14-AM-06_43_51
Last ObjectModification: 2016_01_14-PM-08_18_08

Theory : list_0


Home Index