Nuprl Lemma : decidable__l_contains

[T:Type]. ((∀x,y:T.  Dec(x y ∈ T))  (∀A,B:T List.  Dec(A ⊆ B)))


Proof




Definitions occuring in Statement :  l_contains: A ⊆ B list: List decidable: Dec(P) uall: [x:A]. B[x] all: x:A. B[x] implies:  Q universe: Type equal: t ∈ T
Definitions unfolded in proof :  l_contains: A ⊆ B uall: [x:A]. B[x] implies:  Q all: x:A. B[x] member: t ∈ T so_lambda: λ2x.t[x] prop: so_apply: x[s]
Lemmas referenced :  decidable__l_all l_member_wf decidable__l_member set_wf list_wf all_wf decidable_wf equal_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_functionElimination lambdaEquality setElimination rename hypothesis setEquality independent_functionElimination because_Cache universeEquality

Latex:
\mforall{}[T:Type].  ((\mforall{}x,y:T.    Dec(x  =  y))  {}\mRightarrow{}  (\mforall{}A,B:T  List.    Dec(A  \msubseteq{}  B)))



Date html generated: 2016_05_14-AM-07_54_11
Last ObjectModification: 2015_12_26-PM-04_48_22

Theory : list_1


Home Index