Nuprl Lemma : decidable__l_contains
∀[T:Type]. ((∀x,y:T.  Dec(x = y ∈ T)) 
⇒ (∀A,B:T List.  Dec(A ⊆ B)))
Proof
Definitions occuring in Statement : 
l_contains: A ⊆ B
, 
list: T List
, 
decidable: Dec(P)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
l_contains: A ⊆ B
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
so_apply: x[s]
Lemmas referenced : 
decidable__l_all, 
l_member_wf, 
decidable__l_member, 
set_wf, 
list_wf, 
all_wf, 
decidable_wf, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
dependent_functionElimination, 
lambdaEquality, 
setElimination, 
rename, 
hypothesis, 
setEquality, 
independent_functionElimination, 
because_Cache, 
universeEquality
Latex:
\mforall{}[T:Type].  ((\mforall{}x,y:T.    Dec(x  =  y))  {}\mRightarrow{}  (\mforall{}A,B:T  List.    Dec(A  \msubseteq{}  B)))
Date html generated:
2016_05_14-AM-07_54_11
Last ObjectModification:
2015_12_26-PM-04_48_22
Theory : list_1
Home
Index