Nuprl Lemma : decidable__l_all
∀[A:Type]. ∀L:A List. ∀[F:{a:A| (a ∈ L)}  ⟶ ℙ]. ((∀k:{a:A| (a ∈ L)} . Dec(F[k])) 
⇒ Dec((∀k∈L.F[k])))
Proof
Definitions occuring in Statement : 
l_all: (∀x∈L.P[x])
, 
l_member: (x ∈ l)
, 
list: T List
, 
decidable: Dec(P)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
set: {x:A| B[x]} 
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
l-all-decider: l-all-decider()
, 
ifthenelse: if b then t else f fi 
, 
genrec-ap: genrec-ap, 
it: ⋅
, 
any: any x
, 
decidable__false, 
decidable__implies, 
decidable__not, 
int_seg_decide: int_seg_decide(d;i;j)
, 
squash: ↓T
, 
or: P ∨ Q
, 
guard: {T}
, 
prop: ℙ
, 
has-value: (a)↓
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
strict4: strict4(F)
, 
uimplies: b supposing a
, 
so_apply: x[s]
, 
top: Top
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s1;s2;s3;s4]
, 
so_lambda: so_lambda(x,y,z,w.t[x; y; z; w])
, 
uall: ∀[x:A]. B[x]
, 
decidable__exists_int_seg, 
decidable__all_int_seg, 
decidable__l_all-proof, 
member: t ∈ T
Lemmas referenced : 
lifting-strict-decide, 
is-exception_wf, 
base_wf, 
has-value_wf_base, 
equal_wf, 
top_wf, 
lifting-strict-callbyvalue, 
decidable__l_all-proof, 
decidable__false, 
decidable__implies, 
decidable__not, 
decidable__exists_int_seg, 
decidable__all_int_seg
Rules used in proof : 
inlFormation, 
exceptionSqequal, 
imageElimination, 
imageMemberEquality, 
because_Cache, 
inrFormation, 
decideExceptionCases, 
closedConclusion, 
baseApply, 
independent_functionElimination, 
dependent_functionElimination, 
sqleReflexivity, 
unionElimination, 
unionEquality, 
equalitySymmetry, 
equalityTransitivity, 
hypothesisEquality, 
callbyvalueDecide, 
lambdaFormation, 
independent_pairFormation, 
independent_isectElimination, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
baseClosed, 
isectElimination, 
sqequalHypSubstitution, 
thin, 
sqequalRule, 
hypothesis, 
extract_by_obid, 
instantiate, 
cut, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
introduction
Latex:
\mforall{}[A:Type].  \mforall{}L:A  List.  \mforall{}[F:\{a:A|  (a  \mmember{}  L)\}    {}\mrightarrow{}  \mBbbP{}].  ((\mforall{}k:\{a:A|  (a  \mmember{}  L)\}  .  Dec(F[k]))  {}\mRightarrow{}  Dec((\mforall{}k\mmember{}L.F[k])\000C))
Date html generated:
2018_05_21-PM-00_35_36
Last ObjectModification:
2018_05_18-PM-04_17_57
Theory : list_1
Home
Index