Nuprl Lemma : decidable__l_exists

[A:Type]. ∀[F:A ⟶ ℙ].  ∀L:A List. ((∀k:A. Dec(F[k]))  Dec((∃k∈L. F[k])))


Proof




Definitions occuring in Statement :  l_exists: (∃x∈L. P[x]) list: List decidable: Dec(P) uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  member: t ∈ T int_seg_decide: int_seg_decide(d;i;j) it: genrec-ap: genrec-ap l-exists-decider: l-exists-decider() decidable__l_exists-proof decidable__exists_int_seg
Lemmas referenced :  decidable__l_exists-proof decidable__exists_int_seg
Rules used in proof :  introduction sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut instantiate extract_by_obid hypothesis sqequalRule thin sqequalHypSubstitution equalityTransitivity equalitySymmetry

Latex:
\mforall{}[A:Type].  \mforall{}[F:A  {}\mrightarrow{}  \mBbbP{}].    \mforall{}L:A  List.  ((\mforall{}k:A.  Dec(F[k]))  {}\mRightarrow{}  Dec((\mexists{}k\mmember{}L.  F[k])))



Date html generated: 2018_05_21-PM-00_35_50
Last ObjectModification: 2018_05_19-AM-06_43_13

Theory : list_1


Home Index