Nuprl Lemma : decidable__l_exists
∀[A:Type]. ∀[F:A ⟶ ℙ].  ∀L:A List. ((∀k:A. Dec(F[k])) 
⇒ Dec((∃k∈L. F[k])))
Proof
Definitions occuring in Statement : 
l_exists: (∃x∈L. P[x])
, 
list: T List
, 
decidable: Dec(P)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
member: t ∈ T
, 
int_seg_decide: int_seg_decide(d;i;j)
, 
it: ⋅
, 
genrec-ap: genrec-ap, 
l-exists-decider: l-exists-decider()
, 
decidable__l_exists-proof, 
decidable__exists_int_seg
Lemmas referenced : 
decidable__l_exists-proof, 
decidable__exists_int_seg
Rules used in proof : 
introduction, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
cut, 
instantiate, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
thin, 
sqequalHypSubstitution, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[A:Type].  \mforall{}[F:A  {}\mrightarrow{}  \mBbbP{}].    \mforall{}L:A  List.  ((\mforall{}k:A.  Dec(F[k]))  {}\mRightarrow{}  Dec((\mexists{}k\mmember{}L.  F[k])))
Date html generated:
2018_05_21-PM-00_35_50
Last ObjectModification:
2018_05_19-AM-06_43_13
Theory : list_1
Home
Index