Nuprl Lemma : decidable__list-closed2

[T:Type]. ∀L:T List. ∀f:T ⟶ (T List). ∀d:EqDecider(T).  Dec(list-closed(T;L;f))


Proof




Definitions occuring in Statement :  list-closed: list-closed(T;L;f) list: List deq: EqDecider(T) decidable: Dec(P) uall: [x:A]. B[x] all: x:A. B[x] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T implies:  Q
Lemmas referenced :  decidable__list-closed decidable-equal-deq deq_wf list_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  Error :lambdaFormation_alt,  cut introduction extract_by_obid hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_functionElimination independent_functionElimination Error :inhabitedIsType,  Error :universeIsType,  Error :functionIsType,  instantiate universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}L:T  List.  \mforall{}f:T  {}\mrightarrow{}  (T  List).  \mforall{}d:EqDecider(T).    Dec(list-closed(T;L;f))



Date html generated: 2019_06_20-PM-02_13_25
Last ObjectModification: 2019_06_20-PM-02_08_00

Theory : list_1


Home Index