Nuprl Lemma : decidable__list-closed2
∀[T:Type]. ∀L:T List. ∀f:T ⟶ (T List). ∀d:EqDecider(T).  Dec(list-closed(T;L;f))
Proof
Definitions occuring in Statement : 
list-closed: list-closed(T;L;f)
, 
list: T List
, 
deq: EqDecider(T)
, 
decidable: Dec(P)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
Lemmas referenced : 
decidable__list-closed, 
decidable-equal-deq, 
deq_wf, 
list_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
Error :lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
dependent_functionElimination, 
independent_functionElimination, 
Error :inhabitedIsType, 
Error :universeIsType, 
Error :functionIsType, 
instantiate, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}L:T  List.  \mforall{}f:T  {}\mrightarrow{}  (T  List).  \mforall{}d:EqDecider(T).    Dec(list-closed(T;L;f))
Date html generated:
2019_06_20-PM-02_13_25
Last ObjectModification:
2019_06_20-PM-02_08_00
Theory : list_1
Home
Index