Nuprl Lemma : eval-list-sq
∀[L:ℤ List]. (eval-list(L) ~ L)
Proof
Definitions occuring in Statement : 
eval-list: eval-list(L)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
int: ℤ
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
sq_type: SQType(T)
, 
guard: {T}
Lemmas referenced : 
subtype_base_sq, 
list_wf, 
list_subtype_base, 
int_subtype_base, 
eval-list_wf, 
set_wf, 
equal-wf-base, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
instantiate, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
cumulativity, 
intEquality, 
hypothesis, 
independent_isectElimination, 
sqequalAxiom, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
lambdaFormation, 
setElimination, 
rename, 
equalitySymmetry, 
equalityTransitivity, 
dependent_functionElimination, 
independent_functionElimination
Latex:
\mforall{}[L:\mBbbZ{}  List].  (eval-list(L)  \msim{}  L)
Date html generated:
2017_04_14-AM-09_28_00
Last ObjectModification:
2017_02_27-PM-04_01_37
Theory : list_1
Home
Index