Nuprl Lemma : for_hdtl_cons_lemma

g,as,a,k,f,T:Top.  (ForHdTl{T,f,k} h::t ∈ [a as]. g[h;t] g[a;as] (ForHdTl{T,f,k} h::t ∈ as. g[h;t]))


Proof




Definitions occuring in Statement :  for_hdtl: ForHdTl{A,f,k} h::t ∈ as. g[h; t] cons: [a b] top: Top so_apply: x[s1;s2] all: x:A. B[x] apply: a sqequal: t
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T for_hdtl: ForHdTl{A,f,k} h::t ∈ as. g[h; t] top: Top
Lemmas referenced :  top_wf mapcons_cons_lemma reduce_cons_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut hypothesis lemma_by_obid sqequalRule sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality

Latex:
\mforall{}g,as,a,k,f,T:Top.
    (ForHdTl\{T,f,k\}  h::t  \mmember{}  [a  /  as].  g[h;t]  \msim{}  f  g[a;as]  (ForHdTl\{T,f,k\}  h::t  \mmember{}  as.  g[h;t]))



Date html generated: 2016_05_14-AM-07_38_36
Last ObjectModification: 2015_12_26-PM-02_12_48

Theory : list_1


Home Index