Nuprl Lemma : for_hdtl_cons_lemma
∀g,as,a,k,f,T:Top.  (ForHdTl{T,f,k} h::t ∈ [a / as]. g[h;t] ~ f g[a;as] (ForHdTl{T,f,k} h::t ∈ as. g[h;t]))
Proof
Definitions occuring in Statement : 
for_hdtl: ForHdTl{A,f,k} h::t ∈ as. g[h; t], 
cons: [a / b], 
top: Top, 
so_apply: x[s1;s2], 
all: ∀x:A. B[x], 
apply: f a, 
sqequal: s ~ t
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
member: t ∈ T, 
for_hdtl: ForHdTl{A,f,k} h::t ∈ as. g[h; t], 
top: Top
Lemmas referenced : 
top_wf, 
mapcons_cons_lemma, 
reduce_cons_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
hypothesis, 
lemma_by_obid, 
sqequalRule, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality
Latex:
\mforall{}g,as,a,k,f,T:Top.
    (ForHdTl\{T,f,k\}  h::t  \mmember{}  [a  /  as].  g[h;t]  \msim{}  f  g[a;as]  (ForHdTl\{T,f,k\}  h::t  \mmember{}  as.  g[h;t]))
 Date html generated: 
2016_05_14-AM-07_38_36
 Last ObjectModification: 
2015_12_26-PM-02_12_48
Theory : list_1
Home
Index