Nuprl Lemma : hd-append-sq
∀[L1:Top List+]. ∀[L2:Top].  (hd(L1 @ L2) ~ hd(L1))
Proof
Definitions occuring in Statement : 
listp: A List+
, 
hd: hd(l)
, 
append: as @ bs
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
listp: A List+
, 
all: ∀x:A. B[x]
, 
or: P ∨ Q
, 
append: as @ bs
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
top: Top
, 
so_apply: x[s1;s2;s3]
, 
ge: i ≥ j 
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
true: True
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
cons: [a / b]
Lemmas referenced : 
listp_properties, 
top_wf, 
list-cases, 
length_of_nil_lemma, 
list_ind_nil_lemma, 
product_subtype_list, 
length_of_cons_lemma, 
list_ind_cons_lemma, 
reduce_hd_cons_lemma, 
listp_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
dependent_functionElimination, 
unionElimination, 
sqequalRule, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
productElimination, 
independent_functionElimination, 
natural_numberEquality, 
promote_hyp, 
hypothesis_subsumption, 
sqequalAxiom
Latex:
\mforall{}[L1:Top  List\msupplus{}].  \mforall{}[L2:Top].    (hd(L1  @  L2)  \msim{}  hd(L1))
Date html generated:
2016_05_14-PM-03_05_38
Last ObjectModification:
2015_12_26-PM-01_53_16
Theory : list_1
Home
Index