Nuprl Lemma : hd-append-sq

[L1:Top List+]. ∀[L2:Top].  (hd(L1 L2) hd(L1))


Proof




Definitions occuring in Statement :  listp: List+ hd: hd(l) append: as bs uall: [x:A]. B[x] top: Top sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T listp: List+ all: x:A. B[x] or: P ∨ Q append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3] ge: i ≥  le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) true: True not: ¬A implies:  Q false: False cons: [a b]
Lemmas referenced :  listp_properties top_wf list-cases length_of_nil_lemma list_ind_nil_lemma product_subtype_list length_of_cons_lemma list_ind_cons_lemma reduce_hd_cons_lemma listp_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin because_Cache hypothesisEquality hypothesis setElimination rename dependent_functionElimination unionElimination sqequalRule isect_memberEquality voidElimination voidEquality productElimination independent_functionElimination natural_numberEquality promote_hyp hypothesis_subsumption sqequalAxiom

Latex:
\mforall{}[L1:Top  List\msupplus{}].  \mforall{}[L2:Top].    (hd(L1  @  L2)  \msim{}  hd(L1))



Date html generated: 2016_05_14-PM-03_05_38
Last ObjectModification: 2015_12_26-PM-01_53_16

Theory : list_1


Home Index