Nuprl Lemma : listp_properties

[A:Type]. ∀[l:A List+].  (||l|| ≥ )


Proof




Definitions occuring in Statement :  listp: List+ length: ||as|| uall: [x:A]. B[x] ge: i ≥  natural_number: $n universe: Type
Definitions unfolded in proof :  listp: List+ uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] or: P ∨ Q less_than: a < b squash: T less_than': less_than'(a;b) false: False and: P ∧ Q cons: [a b] top: Top implies:  Q guard: {T} nat: ge: i ≥  decidable: Dec(P) iff: ⇐⇒ Q not: ¬A rev_implies:  Q prop: uiff: uiff(P;Q) uimplies: supposing a sq_stable: SqStable(P) subtract: m subtype_rel: A ⊆B le: A ≤ B true: True so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  list-cases length_of_nil_lemma product_subtype_list length_of_cons_lemma length_wf_nat nat_wf decidable__le false_wf not-ge-2 sq_stable__le condition-implies-le minus-add minus-one-mul add-swap minus-one-mul-top add-associates add-commutes add_functionality_wrt_le add-zero le-add-cancel2 equal_wf less_than'_wf length_wf set_wf list_wf less_than_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut setElimination thin rename hypothesisEquality extract_by_obid sqequalHypSubstitution isectElimination hypothesis dependent_functionElimination unionElimination imageElimination productElimination voidElimination promote_hyp hypothesis_subsumption isect_memberEquality voidEquality lambdaFormation natural_numberEquality addEquality independent_pairFormation independent_functionElimination independent_isectElimination imageMemberEquality baseClosed applyEquality lambdaEquality intEquality because_Cache minusEquality equalityTransitivity equalitySymmetry independent_pairEquality cumulativity axiomEquality universeEquality

Latex:
\mforall{}[A:Type].  \mforall{}[l:A  List\msupplus{}].    (||l||  \mgeq{}  1  )



Date html generated: 2017_04_17-AM-07_30_48
Last ObjectModification: 2017_02_27-PM-04_08_11

Theory : list_1


Home Index