Nuprl Lemma : insert-no-combine_wf

[T:Type]. ∀[cmp:comparison(T)]. ∀[x:T]. ∀[L:T List].  (insert-no-combine(cmp;x;L) ∈ List)


Proof




Definitions occuring in Statement :  insert-no-combine: insert-no-combine(cmp;x;l) comparison: comparison(T) list: List uall: [x:A]. B[x] member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T insert-no-combine: insert-no-combine(cmp;x;l) so_lambda: so_lambda(x,y,z.t[x; y; z]) comparison: comparison(T) so_apply: x[s1;s2;s3] all: x:A. B[x]
Lemmas referenced :  list_ind_wf list_wf cons_wf nil_wf ifthenelse_wf le_int_wf comparison_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis lambdaEquality natural_numberEquality applyEquality setElimination rename axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache dependent_functionElimination universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[cmp:comparison(T)].  \mforall{}[x:T].  \mforall{}[L:T  List].    (insert-no-combine(cmp;x;L)  \mmember{}  T  List)



Date html generated: 2016_05_14-PM-02_43_02
Last ObjectModification: 2015_12_26-PM-02_41_24

Theory : list_1


Home Index