Nuprl Lemma : iseg-append-one
∀[T:Type]. ∀L1,L2:T List. ∀x:T.  (L1 ≤ L2 @ [x] 
⇐⇒ L1 ≤ L2 ∨ (L1 = (L2 @ [x]) ∈ (T List)))
Proof
Definitions occuring in Statement : 
iseg: l1 ≤ l2
, 
append: as @ bs
, 
cons: [a / b]
, 
nil: []
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
or: P ∨ Q
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
or: P ∨ Q
, 
guard: {T}
, 
exists: ∃x:A. B[x]
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
false: False
, 
cons: [a / b]
, 
top: Top
, 
bfalse: ff
, 
true: True
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
Lemmas referenced : 
iseg_wf, 
append_wf, 
cons_wf, 
nil_wf, 
or_wf, 
equal_wf, 
list_wf, 
iseg_append_iff, 
iseg_single, 
list-cases, 
null_nil_lemma, 
length_of_nil_lemma, 
product_subtype_list, 
null_cons_lemma, 
length_of_cons_lemma, 
squash_wf, 
true_wf, 
iff_weakening_equal, 
iseg_append, 
iseg_weakening
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
independent_pairFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
universeEquality, 
dependent_functionElimination, 
productElimination, 
independent_functionElimination, 
unionElimination, 
inlFormation, 
sqequalRule, 
inrFormation, 
imageElimination, 
voidElimination, 
promote_hyp, 
hypothesis_subsumption, 
isect_memberEquality, 
voidEquality, 
applyEquality, 
lambdaEquality, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
hyp_replacement, 
applyLambdaEquality
Latex:
\mforall{}[T:Type].  \mforall{}L1,L2:T  List.  \mforall{}x:T.    (L1  \mleq{}  L2  @  [x]  \mLeftarrow{}{}\mRightarrow{}  L1  \mleq{}  L2  \mvee{}  (L1  =  (L2  @  [x])))
Date html generated:
2017_04_17-AM-08_47_37
Last ObjectModification:
2017_02_27-PM-05_04_30
Theory : list_1
Home
Index