Nuprl Lemma : iseg-append-one

[T:Type]. ∀L1,L2:T List. ∀x:T.  (L1 ≤ L2 [x] ⇐⇒ L1 ≤ L2 ∨ (L1 (L2 [x]) ∈ (T List)))


Proof




Definitions occuring in Statement :  iseg: l1 ≤ l2 append: as bs cons: [a b] nil: [] list: List uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q or: P ∨ Q universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q member: t ∈ T prop: rev_implies:  Q or: P ∨ Q guard: {T} exists: x:A. B[x] assert: b ifthenelse: if then else fi  btrue: tt less_than: a < b squash: T less_than': less_than'(a;b) false: False cons: [a b] top: Top bfalse: ff true: True subtype_rel: A ⊆B uimplies: supposing a
Lemmas referenced :  iseg_wf append_wf cons_wf nil_wf or_wf equal_wf list_wf iseg_append_iff iseg_single list-cases null_nil_lemma length_of_nil_lemma product_subtype_list null_cons_lemma length_of_cons_lemma squash_wf true_wf iff_weakening_equal iseg_append iseg_weakening
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation independent_pairFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality hypothesis universeEquality dependent_functionElimination productElimination independent_functionElimination unionElimination inlFormation sqequalRule inrFormation imageElimination voidElimination promote_hyp hypothesis_subsumption isect_memberEquality voidEquality applyEquality lambdaEquality equalityTransitivity equalitySymmetry because_Cache natural_numberEquality imageMemberEquality baseClosed independent_isectElimination hyp_replacement applyLambdaEquality

Latex:
\mforall{}[T:Type].  \mforall{}L1,L2:T  List.  \mforall{}x:T.    (L1  \mleq{}  L2  @  [x]  \mLeftarrow{}{}\mRightarrow{}  L1  \mleq{}  L2  \mvee{}  (L1  =  (L2  @  [x])))



Date html generated: 2017_04_17-AM-08_47_37
Last ObjectModification: 2017_02_27-PM-05_04_30

Theory : list_1


Home Index