Nuprl Lemma : iseg-sorted-by
∀[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  ∀sa,sb:T List.  (sa ≤ sb 
⇒ sorted-by(R;sb) 
⇒ sorted-by(R;sa))
Proof
Definitions occuring in Statement : 
sorted-by: sorted-by(R;L)
, 
iseg: l1 ≤ l2
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
Lemmas referenced : 
sublist-sorted-by, 
iseg_wf, 
list_wf, 
sublist_iseg
Rules used in proof : 
cut, 
lemma_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaFormation, 
dependent_functionElimination, 
independent_functionElimination, 
functionEquality, 
cumulativity, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    \mforall{}sa,sb:T  List.    (sa  \mleq{}  sb  {}\mRightarrow{}  sorted-by(R;sb)  {}\mRightarrow{}  sorted-by(R;sa))
Date html generated:
2016_05_14-PM-01_48_18
Last ObjectModification:
2015_12_26-PM-05_34_57
Theory : list_1
Home
Index