Nuprl Lemma : sublist-sorted-by

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].  ∀sa,sb:T List.  (sa ⊆ sb  sorted-by(R;sb)  sorted-by(R;sa))


Proof




Definitions occuring in Statement :  sorted-by: sorted-by(R;L) sublist: L1 ⊆ L2 list: List uall: [x:A]. B[x] prop: all: x:A. B[x] implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q sublist: L1 ⊆ L2 exists: x:A. B[x] sorted-by: sorted-by(R;L) and: P ∧ Q member: t ∈ T int_seg: {i..j-} lelt: i ≤ j < k guard: {T} decidable: Dec(P) or: P ∨ Q less_than: a < b squash: T uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top prop: le: A ≤ B subtype_rel: A ⊆B iff: ⇐⇒ Q rev_implies:  Q so_lambda: λ2x.t[x] so_apply: x[s] ge: i ≥  nat:
Lemmas referenced :  int_term_value_constant_lemma int_formula_prop_le_lemma itermConstant_wf intformle_wf le_wf nat_properties decidable__le non_neg_length length_wf_nat increasing_implies list_wf sublist_wf set_wf subtype_rel_self l_member_wf subtype_rel_dep_function sorted-by_wf int_seg_wf iff_weakening_equal lelt_wf int_formula_prop_wf int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf intformless_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__lt length_wf int_seg_properties
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation sqequalHypSubstitution productElimination thin cut applyEquality hypothesisEquality hypothesis dependent_functionElimination setElimination rename dependent_set_memberEquality independent_pairFormation lemma_by_obid isectElimination natural_numberEquality unionElimination imageElimination independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule computeAll cumulativity universeEquality equalityTransitivity equalitySymmetry independent_functionElimination instantiate functionEquality setEquality because_Cache

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].    \mforall{}sa,sb:T  List.    (sa  \msubseteq{}  sb  {}\mRightarrow{}  sorted-by(R;sb)  {}\mRightarrow{}  sorted-by(R;sa))



Date html generated: 2016_05_14-PM-01_48_11
Last ObjectModification: 2016_01_15-AM-08_23_42

Theory : list_1


Home Index