Nuprl Lemma : iseg_transitivity
∀[T:Type]. ∀l1,l2,l3:T List.  (l1 ≤ l2 
⇒ l2 ≤ l3 
⇒ l1 ≤ l3)
Proof
Definitions occuring in Statement : 
iseg: l1 ≤ l2
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
universe: Type
Definitions unfolded in proof : 
iseg: l1 ≤ l2
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
member: t ∈ T
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
true: True
, 
top: Top
, 
squash: ↓T
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
append_wf, 
equal_wf, 
list_wf, 
exists_wf, 
append_assoc, 
squash_wf, 
true_wf, 
subtype_rel_self, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
Error :isect_memberFormation_alt, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
dependent_pairFormation, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
lambdaEquality, 
Error :universeIsType, 
universeEquality, 
because_Cache, 
natural_numberEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
applyEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
imageMemberEquality, 
baseClosed, 
instantiate, 
independent_isectElimination, 
independent_functionElimination
Latex:
\mforall{}[T:Type].  \mforall{}l1,l2,l3:T  List.    (l1  \mleq{}  l2  {}\mRightarrow{}  l2  \mleq{}  l3  {}\mRightarrow{}  l1  \mleq{}  l3)
Date html generated:
2019_06_20-PM-01_28_06
Last ObjectModification:
2018_09_26-PM-05_37_19
Theory : list_1
Home
Index