Nuprl Lemma : iseg_transitivity2
∀[T:Type]. ∀l1,l2,l3:T List.  (l2 ≤ l3 
⇒ l1 ≤ l2 
⇒ l1 ≤ l3)
Proof
Definitions occuring in Statement : 
iseg: l1 ≤ l2
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
Lemmas referenced : 
iseg_transitivity, 
iseg_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
dependent_functionElimination, 
independent_functionElimination, 
hypothesis, 
Error :universeIsType, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}l1,l2,l3:T  List.    (l2  \mleq{}  l3  {}\mRightarrow{}  l1  \mleq{}  l2  {}\mRightarrow{}  l1  \mleq{}  l3)
Date html generated:
2019_06_20-PM-01_28_24
Last ObjectModification:
2018_09_26-PM-05_39_34
Theory : list_1
Home
Index