Nuprl Lemma : iseg_weakening2
∀[T:Type]. ∀l1,l2:T List.  l1 ≤ l2 supposing l1 = l2 ∈ (T List)
Proof
Definitions occuring in Statement : 
iseg: l1 ≤ l2
, 
list: T List
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
squash: ↓T
, 
prop: ℙ
, 
true: True
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
Lemmas referenced : 
equal_wf, 
iseg_weakening, 
iff_weakening_equal, 
list_wf, 
true_wf, 
squash_wf, 
iseg_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
introduction, 
axiomEquality, 
hypothesis, 
thin, 
rename, 
applyEquality, 
lambdaEquality, 
sqequalHypSubstitution, 
imageElimination, 
lemma_by_obid, 
isectElimination, 
hypothesisEquality, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
natural_numberEquality, 
sqequalRule, 
imageMemberEquality, 
baseClosed, 
independent_isectElimination, 
productElimination, 
independent_functionElimination, 
because_Cache, 
dependent_functionElimination
Latex:
\mforall{}[T:Type].  \mforall{}l1,l2:T  List.    l1  \mleq{}  l2  supposing  l1  =  l2
Date html generated:
2016_05_14-PM-01_31_53
Last ObjectModification:
2016_01_15-AM-08_26_57
Theory : list_1
Home
Index