Nuprl Lemma : iseg_weakening2

[T:Type]. ∀l1,l2:T List.  l1 ≤ l2 supposing l1 l2 ∈ (T List)


Proof




Definitions occuring in Statement :  iseg: l1 ≤ l2 list: List uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] uimplies: supposing a member: t ∈ T squash: T prop: true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q
Lemmas referenced :  equal_wf iseg_weakening iff_weakening_equal list_wf true_wf squash_wf iseg_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut introduction axiomEquality hypothesis thin rename applyEquality lambdaEquality sqequalHypSubstitution imageElimination lemma_by_obid isectElimination hypothesisEquality equalityTransitivity equalitySymmetry universeEquality natural_numberEquality sqequalRule imageMemberEquality baseClosed independent_isectElimination productElimination independent_functionElimination because_Cache dependent_functionElimination

Latex:
\mforall{}[T:Type].  \mforall{}l1,l2:T  List.    l1  \mleq{}  l2  supposing  l1  =  l2



Date html generated: 2016_05_14-PM-01_31_53
Last ObjectModification: 2016_01_15-AM-08_26_57

Theory : list_1


Home Index