Nuprl Lemma : l_all-nil

[P:Top]. ((∀x∈[].P[x]) ⇐⇒ True)


Proof




Definitions occuring in Statement :  l_all: (∀x∈L.P[x]) nil: [] uall: [x:A]. B[x] top: Top so_apply: x[s] iff: ⇐⇒ Q true: True
Definitions unfolded in proof :  uall: [x:A]. B[x] iff: ⇐⇒ Q and: P ∧ Q implies:  Q true: True member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s] rev_implies:  Q top: Top
Lemmas referenced :  l_all_wf_nil l_all_nil true_wf top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation independent_pairFormation lambdaFormation natural_numberEquality cut lemma_by_obid sqequalHypSubstitution isectElimination thin sqequalRule lambdaEquality voidElimination voidEquality hypothesis isect_memberEquality

Latex:
\mforall{}[P:Top].  ((\mforall{}x\mmember{}[].P[x])  \mLeftarrow{}{}\mRightarrow{}  True)



Date html generated: 2016_05_14-AM-07_49_45
Last ObjectModification: 2015_12_26-PM-04_45_36

Theory : list_1


Home Index