Nuprl Lemma : l_all-nil
∀[P:Top]. ((∀x∈[].P[x]) 
⇐⇒ True)
Proof
Definitions occuring in Statement : 
l_all: (∀x∈L.P[x])
, 
nil: []
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
so_apply: x[s]
, 
iff: P 
⇐⇒ Q
, 
true: True
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
true: True
, 
member: t ∈ T
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
rev_implies: P 
⇐ Q
, 
top: Top
Lemmas referenced : 
l_all_wf_nil, 
l_all_nil, 
true_wf, 
top_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
independent_pairFormation, 
lambdaFormation, 
natural_numberEquality, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
sqequalRule, 
lambdaEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
isect_memberEquality
Latex:
\mforall{}[P:Top].  ((\mforall{}x\mmember{}[].P[x])  \mLeftarrow{}{}\mRightarrow{}  True)
Date html generated:
2016_05_14-AM-07_49_45
Last ObjectModification:
2015_12_26-PM-04_45_36
Theory : list_1
Home
Index