Nuprl Lemma : l_all_nil

[P:Top]. (∀x∈[].P[x])


Proof




Definitions occuring in Statement :  l_all: (∀x∈L.P[x]) nil: [] uall: [x:A]. B[x] top: Top so_apply: x[s]
Definitions unfolded in proof :  l_all: (∀x∈L.P[x]) select: L[n] uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a all: x:A. B[x] nil: [] it: so_lambda: λ2y.t[x; y] top: Top so_apply: x[s1;s2] int_seg: {i..j-} false: False lelt: i ≤ j < k and: P ∧ Q guard: {T} implies:  Q
Lemmas referenced :  top_wf int_seg_wf less_than_irreflexivity less_than_transitivity1 base_wf stuck-spread length_of_nil_lemma
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep cut lemma_by_obid hypothesis sqequalHypSubstitution isectElimination thin baseClosed independent_isectElimination lambdaFormation isect_memberEquality voidElimination voidEquality isect_memberFormation setElimination rename productElimination hypothesisEquality natural_numberEquality independent_functionElimination

Latex:
\mforall{}[P:Top].  (\mforall{}x\mmember{}[].P[x])



Date html generated: 2016_05_14-AM-06_40_00
Last ObjectModification: 2016_01_06-PM-08_33_48

Theory : list_0


Home Index