Nuprl Lemma : l_all_functionality_wrt_permutation

[A:Type]. ∀P:A ⟶ ℙ. ∀L1,L2:A List.  (permutation(A;L1;L2)  {(∀x∈L1.P[x]) ⇐⇒ (∀x∈L2.P[x])})


Proof




Definitions occuring in Statement :  permutation: permutation(T;L1;L2) l_all: (∀x∈L.P[x]) list: List uall: [x:A]. B[x] prop: guard: {T} so_apply: x[s] all: x:A. B[x] iff: ⇐⇒ Q implies:  Q function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q guard: {T} iff: ⇐⇒ Q and: P ∧ Q member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] prop: rev_implies:  Q
Lemmas referenced :  l_all_iff l_member_wf member-permutation l_all_wf permutation_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation independent_pairFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_functionElimination sqequalRule lambdaEquality applyEquality setElimination rename setEquality hypothesis productElimination independent_functionElimination because_Cache functionEquality cumulativity universeEquality

Latex:
\mforall{}[A:Type].  \mforall{}P:A  {}\mrightarrow{}  \mBbbP{}.  \mforall{}L1,L2:A  List.    (permutation(A;L1;L2)  {}\mRightarrow{}  \{(\mforall{}x\mmember{}L1.P[x])  \mLeftarrow{}{}\mRightarrow{}  (\mforall{}x\mmember{}L2.P[x])\})



Date html generated: 2016_05_14-PM-02_34_13
Last ObjectModification: 2015_12_26-PM-04_20_21

Theory : list_1


Home Index