Nuprl Lemma : l_before_sublist
∀[T:Type]. ∀L1,L2:T List.  (L1 ⊆ L2 
⇒ {∀x,y:T.  (x before y ∈ L1 
⇒ x before y ∈ L2)})
Proof
Definitions occuring in Statement : 
l_before: x before y ∈ l
, 
sublist: L1 ⊆ L2
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
guard: {T}
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
universe: Type
Definitions unfolded in proof : 
l_before: x before y ∈ l
, 
guard: {T}
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
Lemmas referenced : 
sublist_transitivity, 
cons_wf, 
nil_wf, 
sublist_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
Error :isect_memberFormation_alt, 
Error :lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
dependent_functionElimination, 
hypothesis, 
independent_functionElimination, 
Error :universeIsType, 
Error :inhabitedIsType, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}L1,L2:T  List.    (L1  \msubseteq{}  L2  {}\mRightarrow{}  \{\mforall{}x,y:T.    (x  before  y  \mmember{}  L1  {}\mRightarrow{}  x  before  y  \mmember{}  L2)\})
Date html generated:
2019_06_20-PM-01_23_28
Last ObjectModification:
2018_09_29-PM-00_28_14
Theory : list_1
Home
Index