Nuprl Lemma : l_before_sublist

[T:Type]. ∀L1,L2:T List.  (L1 ⊆ L2  {∀x,y:T.  (x before y ∈ L1  before y ∈ L2)})


Proof




Definitions occuring in Statement :  l_before: before y ∈ l sublist: L1 ⊆ L2 list: List uall: [x:A]. B[x] guard: {T} all: x:A. B[x] implies:  Q universe: Type
Definitions unfolded in proof :  l_before: before y ∈ l guard: {T} uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T prop:
Lemmas referenced :  sublist_transitivity cons_wf nil_wf sublist_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep Error :isect_memberFormation_alt,  Error :lambdaFormation_alt,  cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_functionElimination hypothesis independent_functionElimination Error :universeIsType,  Error :inhabitedIsType,  universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}L1,L2:T  List.    (L1  \msubseteq{}  L2  {}\mRightarrow{}  \{\mforall{}x,y:T.    (x  before  y  \mmember{}  L1  {}\mRightarrow{}  x  before  y  \mmember{}  L2)\})



Date html generated: 2019_06_20-PM-01_23_28
Last ObjectModification: 2018_09_29-PM-00_28_14

Theory : list_1


Home Index