Nuprl Lemma : l_before_wf

[T:Type]. ∀[l:T List]. ∀[x,y:T].  (x before y ∈ l ∈ ℙ)


Proof




Definitions occuring in Statement :  l_before: before y ∈ l list: List uall: [x:A]. B[x] prop: member: t ∈ T universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T l_before: before y ∈ l
Lemmas referenced :  sublist_wf cons_wf nil_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis axiomEquality equalityTransitivity equalitySymmetry Error :inhabitedIsType,  isect_memberEquality Error :universeIsType,  because_Cache universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[l:T  List].  \mforall{}[x,y:T].    (x  before  y  \mmember{}  l  \mmember{}  \mBbbP{})



Date html generated: 2019_06_20-PM-01_23_05
Last ObjectModification: 2018_09_26-PM-05_23_33

Theory : list_1


Home Index