Nuprl Lemma : l_contains_nil

[T:Type]. ∀L:T List. [] ⊆ L


Proof




Definitions occuring in Statement :  l_contains: A ⊆ B nil: [] list: List uall: [x:A]. B[x] all: x:A. B[x] universe: Type
Definitions unfolded in proof :  l_contains: A ⊆ B uall: [x:A]. B[x] all: x:A. B[x] so_lambda: λ2x.t[x] member: t ∈ T top: Top so_apply: x[s]
Lemmas referenced :  l_all_nil list_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin isect_memberEquality voidElimination voidEquality hypothesis hypothesisEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}L:T  List.  []  \msubseteq{}  L



Date html generated: 2016_05_14-AM-07_54_29
Last ObjectModification: 2015_12_26-PM-04_48_47

Theory : list_1


Home Index