Nuprl Lemma : l_contains_nil
∀[T:Type]. ∀L:T List. [] ⊆ L
Proof
Definitions occuring in Statement : 
l_contains: A ⊆ B
, 
nil: []
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
universe: Type
Definitions unfolded in proof : 
l_contains: A ⊆ B
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
so_lambda: λ2x.t[x]
, 
member: t ∈ T
, 
top: Top
, 
so_apply: x[s]
Lemmas referenced : 
l_all_nil, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
hypothesisEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}L:T  List.  []  \msubseteq{}  L
Date html generated:
2016_05_14-AM-07_54_29
Last ObjectModification:
2015_12_26-PM-04_48_47
Theory : list_1
Home
Index