Nuprl Lemma : l_contains_transitivity
∀[T:Type]. ∀A,B,C:T List.  (A ⊆ B 
⇒ B ⊆ C 
⇒ A ⊆ C)
Proof
Definitions occuring in Statement : 
l_contains: A ⊆ B
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
universe: Type
Definitions unfolded in proof : 
l_contains: A ⊆ B
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
guard: {T}
Lemmas referenced : 
l_all_iff, 
l_member_wf, 
l_all_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
dependent_functionElimination, 
lambdaEquality, 
setElimination, 
rename, 
hypothesis, 
setEquality, 
productElimination, 
independent_functionElimination, 
because_Cache, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}A,B,C:T  List.    (A  \msubseteq{}  B  {}\mRightarrow{}  B  \msubseteq{}  C  {}\mRightarrow{}  A  \msubseteq{}  C)
Date html generated:
2016_05_14-AM-07_54_17
Last ObjectModification:
2015_12_26-PM-04_48_29
Theory : list_1
Home
Index