Nuprl Lemma : l_contains_transitivity

[T:Type]. ∀A,B,C:T List.  (A ⊆  B ⊆  A ⊆ C)


Proof




Definitions occuring in Statement :  l_contains: A ⊆ B list: List uall: [x:A]. B[x] all: x:A. B[x] implies:  Q universe: Type
Definitions unfolded in proof :  l_contains: A ⊆ B uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T so_lambda: λ2x.t[x] prop: so_apply: x[s] iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q guard: {T}
Lemmas referenced :  l_all_iff l_member_wf l_all_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_functionElimination lambdaEquality setElimination rename hypothesis setEquality productElimination independent_functionElimination because_Cache universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}A,B,C:T  List.    (A  \msubseteq{}  B  {}\mRightarrow{}  B  \msubseteq{}  C  {}\mRightarrow{}  A  \msubseteq{}  C)



Date html generated: 2016_05_14-AM-07_54_17
Last ObjectModification: 2015_12_26-PM-04_48_29

Theory : list_1


Home Index