Nuprl Lemma : l_contains_weakening

[T:Type]. ∀A,B:T List.  A ⊆ supposing B ∈ (T List)


Proof




Definitions occuring in Statement :  l_contains: A ⊆ B list: List uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] uimplies: supposing a member: t ∈ T l_contains: A ⊆ B l_all: (∀x∈L.P[x]) prop:
Lemmas referenced :  select_member int_seg_wf length_wf l_contains_wf equal_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut introduction axiomEquality hypothesis thin rename extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality dependent_functionElimination natural_numberEquality cumulativity hyp_replacement equalitySymmetry Error :applyLambdaEquality,  sqequalRule universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}A,B:T  List.    A  \msubseteq{}  B  supposing  A  =  B



Date html generated: 2016_10_21-AM-10_05_18
Last ObjectModification: 2016_07_12-AM-05_25_14

Theory : list_1


Home Index