Nuprl Lemma : l_contains_weakening
∀[T:Type]. ∀A,B:T List.  A ⊆ B supposing A = B ∈ (T List)
Proof
Definitions occuring in Statement : 
l_contains: A ⊆ B
, 
list: T List
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
l_contains: A ⊆ B
, 
l_all: (∀x∈L.P[x])
, 
prop: ℙ
Lemmas referenced : 
select_member, 
int_seg_wf, 
length_wf, 
l_contains_wf, 
equal_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
introduction, 
axiomEquality, 
hypothesis, 
thin, 
rename, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
dependent_functionElimination, 
natural_numberEquality, 
cumulativity, 
hyp_replacement, 
equalitySymmetry, 
Error :applyLambdaEquality, 
sqequalRule, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}A,B:T  List.    A  \msubseteq{}  B  supposing  A  =  B
Date html generated:
2016_10_21-AM-10_05_18
Last ObjectModification:
2016_07_12-AM-05_25_14
Theory : list_1
Home
Index