Nuprl Lemma : l_member_decidable
∀[T:Type]. ∀x:T. ∀l:T List.  ((∀y:T. Dec(x = y ∈ T)) 
⇒ Dec((x ∈ l)))
Proof
Definitions occuring in Statement : 
l_member: (x ∈ l)
, 
list: T List
, 
decidable: Dec(P)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_apply: x[s]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
list_induction, 
all_wf, 
decidable_wf, 
equal_wf, 
l_member_wf, 
decidable_functionality, 
nil_wf, 
false_wf, 
nil_member, 
decidable__false, 
cons_wf, 
or_wf, 
cons_member, 
decidable__or, 
list_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
Error :lambdaFormation_alt, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
Error :lambdaEquality_alt, 
functionEquality, 
because_Cache, 
hypothesis, 
independent_functionElimination, 
dependent_functionElimination, 
productElimination, 
Error :functionIsType, 
Error :universeIsType, 
rename, 
instantiate, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}x:T.  \mforall{}l:T  List.    ((\mforall{}y:T.  Dec(x  =  y))  {}\mRightarrow{}  Dec((x  \mmember{}  l)))
Date html generated:
2019_06_20-PM-01_19_50
Last ObjectModification:
2018_10_29-PM-06_24_45
Theory : list_1
Home
Index