Nuprl Lemma : l_member_decidable

[T:Type]. ∀x:T. ∀l:T List.  ((∀y:T. Dec(x y ∈ T))  Dec((x ∈ l)))


Proof




Definitions occuring in Statement :  l_member: (x ∈ l) list: List decidable: Dec(P) uall: [x:A]. B[x] all: x:A. B[x] implies:  Q universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T so_lambda: λ2x.t[x] implies:  Q prop: so_apply: x[s] iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q
Lemmas referenced :  list_induction all_wf decidable_wf equal_wf l_member_wf decidable_functionality nil_wf false_wf nil_member decidable__false cons_wf or_wf cons_member decidable__or list_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  Error :lambdaFormation_alt,  cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule Error :lambdaEquality_alt,  functionEquality because_Cache hypothesis independent_functionElimination dependent_functionElimination productElimination Error :functionIsType,  Error :universeIsType,  rename instantiate universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}x:T.  \mforall{}l:T  List.    ((\mforall{}y:T.  Dec(x  =  y))  {}\mRightarrow{}  Dec((x  \mmember{}  l)))



Date html generated: 2019_06_20-PM-01_19_50
Last ObjectModification: 2018_10_29-PM-06_24_45

Theory : list_1


Home Index