Nuprl Lemma : l_subset_append2

[T:Type]. ∀L1,L2,L1',L2':T List.  ((l_subset(T;L1;L1') ∧ l_subset(T;L2;L2'))  l_subset(T;L1 L2;L1' L2'))


Proof




Definitions occuring in Statement :  l_subset: l_subset(T;as;bs) append: as bs list: List uall: [x:A]. B[x] all: x:A. B[x] implies:  Q and: P ∧ Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q and: P ∧ Q member: t ∈ T iff: ⇐⇒ Q rev_implies:  Q cand: c∧ B prop: l_subset: l_subset(T;as;bs) or: P ∨ Q guard: {T}
Lemmas referenced :  l_subset_append append_wf l_subset_wf list_wf member_append l_member_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation sqequalHypSubstitution productElimination thin cut introduction extract_by_obid isectElimination hypothesisEquality cumulativity hypothesis dependent_functionElimination independent_functionElimination independent_pairFormation productEquality universeEquality because_Cache inlFormation sqequalRule inrFormation

Latex:
\mforall{}[T:Type]
    \mforall{}L1,L2,L1',L2':T  List.
        ((l\_subset(T;L1;L1')  \mwedge{}  l\_subset(T;L2;L2'))  {}\mRightarrow{}  l\_subset(T;L1  @  L2;L1'  @  L2'))



Date html generated: 2017_02_20-AM-10_47_48
Last ObjectModification: 2017_01_22-PM-05_49_51

Theory : list_1


Home Index