Nuprl Lemma : l_subset_append2
∀[T:Type]. ∀L1,L2,L1',L2':T List.  ((l_subset(T;L1;L1') ∧ l_subset(T;L2;L2')) 
⇒ l_subset(T;L1 @ L2;L1' @ L2'))
Proof
Definitions occuring in Statement : 
l_subset: l_subset(T;as;bs)
, 
append: as @ bs
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
member: t ∈ T
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
cand: A c∧ B
, 
prop: ℙ
, 
l_subset: l_subset(T;as;bs)
, 
or: P ∨ Q
, 
guard: {T}
Lemmas referenced : 
l_subset_append, 
append_wf, 
l_subset_wf, 
list_wf, 
member_append, 
l_member_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
sqequalHypSubstitution, 
productElimination, 
thin, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
cumulativity, 
hypothesis, 
dependent_functionElimination, 
independent_functionElimination, 
independent_pairFormation, 
productEquality, 
universeEquality, 
because_Cache, 
inlFormation, 
sqequalRule, 
inrFormation
Latex:
\mforall{}[T:Type]
    \mforall{}L1,L2,L1',L2':T  List.
        ((l\_subset(T;L1;L1')  \mwedge{}  l\_subset(T;L2;L2'))  {}\mRightarrow{}  l\_subset(T;L1  @  L2;L1'  @  L2'))
Date html generated:
2017_02_20-AM-10_47_48
Last ObjectModification:
2017_01_22-PM-05_49_51
Theory : list_1
Home
Index