Nuprl Lemma : l_subset_cons_same

[T:Type]. ∀x:T. ∀L1,L2:T List.  (l_subset(T;L1;L2)  l_subset(T;[x L1];[x L2]))


Proof




Definitions occuring in Statement :  l_subset: l_subset(T;as;bs) cons: [a b] list: List uall: [x:A]. B[x] all: x:A. B[x] implies:  Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q cand: c∧ B or: P ∨ Q prop: l_subset: l_subset(T;as;bs) guard: {T}
Lemmas referenced :  l_subset_cons cons_wf cons_member l_member_wf l_subset_wf list_wf equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin because_Cache dependent_functionElimination hypothesisEquality hypothesis productElimination independent_functionElimination inlFormation independent_pairFormation universeEquality sqequalRule inrFormation

Latex:
\mforall{}[T:Type].  \mforall{}x:T.  \mforall{}L1,L2:T  List.    (l\_subset(T;L1;L2)  {}\mRightarrow{}  l\_subset(T;[x  /  L1];[x  /  L2]))



Date html generated: 2016_05_14-AM-07_54_25
Last ObjectModification: 2015_12_26-PM-04_48_50

Theory : list_1


Home Index