Nuprl Lemma : l_sum_as_reduce
∀[L:ℤ List]. (reduce(λa,s. (s + a);0;L) ~ l_sum(L))
Proof
Definitions occuring in Statement : 
l_sum: l_sum(L)
, 
reduce: reduce(f;k;as)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
lambda: λx.A[x]
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
squash: ↓T
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
true: True
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
sq_type: SQType(T)
Lemmas referenced : 
subtype_base_sq, 
int_subtype_base, 
l_sum_as_reduce_general, 
add-zero, 
l_sum_wf, 
map_wf, 
equal_wf, 
squash_wf, 
true_wf, 
trivial_map, 
l_member_wf, 
iff_weakening_equal, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
instantiate, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
cumulativity, 
intEquality, 
independent_isectElimination, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
hypothesisEquality, 
natural_numberEquality, 
applyEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
universeEquality, 
because_Cache, 
lambdaFormation, 
imageMemberEquality, 
baseClosed, 
productElimination, 
independent_functionElimination, 
dependent_functionElimination, 
sqequalAxiom
Latex:
\mforall{}[L:\mBbbZ{}  List].  (reduce(\mlambda{}a,s.  (s  +  a);0;L)  \msim{}  l\_sum(L))
Date html generated:
2017_04_17-AM-08_40_32
Last ObjectModification:
2017_02_27-PM-04_59_13
Theory : list_1
Home
Index