Nuprl Lemma : l_sum_as_reduce

[L:ℤ List]. (reduce(λa,s. (s a);0;L) l_sum(L))


Proof




Definitions occuring in Statement :  l_sum: l_sum(L) reduce: reduce(f;k;as) list: List uall: [x:A]. B[x] lambda: λx.A[x] add: m natural_number: $n int: sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] squash: T prop: all: x:A. B[x] implies:  Q true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q sq_type: SQType(T)
Lemmas referenced :  subtype_base_sq int_subtype_base l_sum_as_reduce_general add-zero l_sum_wf map_wf equal_wf squash_wf true_wf trivial_map l_member_wf iff_weakening_equal list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin instantiate extract_by_obid sqequalHypSubstitution isectElimination cumulativity intEquality independent_isectElimination hypothesis sqequalRule lambdaEquality hypothesisEquality natural_numberEquality applyEquality imageElimination equalityTransitivity equalitySymmetry universeEquality because_Cache lambdaFormation imageMemberEquality baseClosed productElimination independent_functionElimination dependent_functionElimination sqequalAxiom

Latex:
\mforall{}[L:\mBbbZ{}  List].  (reduce(\mlambda{}a,s.  (s  +  a);0;L)  \msim{}  l\_sum(L))



Date html generated: 2017_04_17-AM-08_40_32
Last ObjectModification: 2017_02_27-PM-04_59_13

Theory : list_1


Home Index