Nuprl Lemma : l_sum_nonneg
∀[L:ℤ List]. ((∀x∈L.0 ≤ x) 
⇒ (0 ≤ l_sum(L)))
Proof
Definitions occuring in Statement : 
l_sum: l_sum(L)
, 
l_all: (∀x∈L.P[x])
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
implies: P 
⇒ Q
, 
natural_number: $n
, 
int: ℤ
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
so_apply: x[s]
Lemmas referenced : 
l_sum-lower-bound, 
zero-mul, 
length_wf, 
l_all_wf, 
le_wf, 
istype-int, 
l_member_wf, 
list_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
dependent_functionElimination, 
thin, 
natural_numberEquality, 
Error :isect_memberFormation_alt, 
hypothesis, 
isectElimination, 
hypothesisEquality, 
Error :lambdaFormation_alt, 
independent_functionElimination, 
sqequalRule, 
intEquality, 
Error :universeIsType, 
Error :lambdaEquality_alt, 
setElimination, 
rename, 
Error :setIsType
Latex:
\mforall{}[L:\mBbbZ{}  List].  ((\mforall{}x\mmember{}L.0  \mleq{}  x)  {}\mRightarrow{}  (0  \mleq{}  l\_sum(L)))
Date html generated:
2019_06_20-PM-01_43_58
Last ObjectModification:
2019_02_22-PM-00_00_13
Theory : list_1
Home
Index