Nuprl Lemma : l_sum_nonneg

[L:ℤ List]. ((∀x∈L.0 ≤ x)  (0 ≤ l_sum(L)))


Proof




Definitions occuring in Statement :  l_sum: l_sum(L) l_all: (∀x∈L.P[x]) list: List uall: [x:A]. B[x] le: A ≤ B implies:  Q natural_number: $n int:
Definitions unfolded in proof :  all: x:A. B[x] member: t ∈ T uall: [x:A]. B[x] implies:  Q so_lambda: λ2x.t[x] prop: so_apply: x[s]
Lemmas referenced :  l_sum-lower-bound zero-mul length_wf l_all_wf le_wf istype-int l_member_wf list_wf
Rules used in proof :  cut introduction extract_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity dependent_functionElimination thin natural_numberEquality Error :isect_memberFormation_alt,  hypothesis isectElimination hypothesisEquality Error :lambdaFormation_alt,  independent_functionElimination sqequalRule intEquality Error :universeIsType,  Error :lambdaEquality_alt,  setElimination rename Error :setIsType

Latex:
\mforall{}[L:\mBbbZ{}  List].  ((\mforall{}x\mmember{}L.0  \mleq{}  x)  {}\mRightarrow{}  (0  \mleq{}  l\_sum(L)))



Date html generated: 2019_06_20-PM-01_43_58
Last ObjectModification: 2019_02_22-PM-00_00_13

Theory : list_1


Home Index