Nuprl Lemma : length-concat-map-single
∀[f,L:Top].  (||concat(map(λx.[f[x]];L))|| ~ ||L||)
Proof
Definitions occuring in Statement : 
length: ||as||
, 
concat: concat(ll)
, 
map: map(f;as)
, 
cons: [a / b]
, 
nil: []
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
so_apply: x[s]
, 
lambda: λx.A[x]
, 
sqequal: s ~ t
Definitions unfolded in proof : 
top: Top
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
top_wf, 
concat-map-single, 
map-length
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
isect_memberFormation, 
introduction, 
cut, 
sqequalAxiom, 
lemma_by_obid, 
hypothesis, 
sqequalRule, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
because_Cache
Latex:
\mforall{}[f,L:Top].    (||concat(map(\mlambda{}x.[f[x]];L))||  \msim{}  ||L||)
Date html generated:
2016_05_14-AM-07_36_29
Last ObjectModification:
2015_12_26-PM-02_11_30
Theory : list_1
Home
Index