Nuprl Lemma : length-concat-map-single

[f,L:Top].  (||concat(map(λx.[f[x]];L))|| ||L||)


Proof




Definitions occuring in Statement :  length: ||as|| concat: concat(ll) map: map(f;as) cons: [a b] nil: [] uall: [x:A]. B[x] top: Top so_apply: x[s] lambda: λx.A[x] sqequal: t
Definitions unfolded in proof :  top: Top member: t ∈ T uall: [x:A]. B[x] so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  top_wf concat-map-single map-length
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberEquality voidElimination voidEquality isect_memberFormation introduction cut sqequalAxiom lemma_by_obid hypothesis sqequalRule sqequalHypSubstitution isectElimination thin hypothesisEquality because_Cache

Latex:
\mforall{}[f,L:Top].    (||concat(map(\mlambda{}x.[f[x]];L))||  \msim{}  ||L||)



Date html generated: 2016_05_14-AM-07_36_29
Last ObjectModification: 2015_12_26-PM-02_11_30

Theory : list_1


Home Index