Nuprl Lemma : concat-map-single
∀[f,L:Top].  (concat(map(λx.[f[x]];L)) ~ map(λx.f[x];L))
Proof
Definitions occuring in Statement : 
concat: concat(ll)
, 
map: map(f;as)
, 
cons: [a / b]
, 
nil: []
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
so_apply: x[s]
, 
lambda: λx.A[x]
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
map: map(f;as)
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
strict1: strict1(F)
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
concat: concat(ll)
, 
reduce: reduce(f;k;as)
, 
list_ind: list_ind, 
has-value: (a)↓
, 
prop: ℙ
, 
or: P ∨ Q
, 
squash: ↓T
, 
guard: {T}
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
so_apply: x[s1;s2;s3]
, 
top: Top
, 
append: as @ bs
Lemmas referenced : 
top_wf, 
reduce_nil_lemma, 
sqle_wf_base, 
list_ind_nil_lemma, 
list_ind_cons_lemma, 
concat-cons, 
is-exception_wf, 
base_wf, 
has-value_wf_base, 
sqequal-list_ind
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
thin, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
baseClosed, 
independent_isectElimination, 
independent_pairFormation, 
lambdaFormation, 
callbyvalueCallbyvalue, 
hypothesis, 
callbyvalueReduce, 
baseApply, 
closedConclusion, 
hypothesisEquality, 
callbyvalueExceptionCases, 
inlFormation, 
imageMemberEquality, 
imageElimination, 
exceptionSqequal, 
inrFormation, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
dependent_functionElimination, 
divergentSqle, 
sqleRule, 
sqleReflexivity, 
because_Cache, 
sqequalAxiom
Latex:
\mforall{}[f,L:Top].    (concat(map(\mlambda{}x.[f[x]];L))  \msim{}  map(\mlambda{}x.f[x];L))
Date html generated:
2016_05_14-AM-07_36_28
Last ObjectModification:
2016_01_15-AM-08_44_12
Theory : list_1
Home
Index