Nuprl Lemma : list-closed_wf

[T:Type]. ∀[L:T List]. ∀[f:T ⟶ (T List)].  (list-closed(T;L;f) ∈ ℙ)


Proof




Definitions occuring in Statement :  list-closed: list-closed(T;L;f) list: List uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T list-closed: list-closed(T;L;f) so_lambda: λ2x.t[x] prop: so_apply: x[s]
Lemmas referenced :  l_all_wf l_member_wf list_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality Error :lambdaEquality_alt,  applyEquality setElimination rename hypothesis Error :setIsType,  Error :universeIsType,  axiomEquality equalityTransitivity equalitySymmetry Error :functionIsType,  Error :inhabitedIsType,  Error :isect_memberEquality_alt,  Error :isectIsTypeImplies,  instantiate universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[f:T  {}\mrightarrow{}  (T  List)].    (list-closed(T;L;f)  \mmember{}  \mBbbP{})



Date html generated: 2019_06_20-PM-01_50_47
Last ObjectModification: 2019_05_13-PM-03_36_23

Theory : list_1


Home Index