Nuprl Lemma : list-closed_wf
∀[T:Type]. ∀[L:T List]. ∀[f:T ⟶ (T List)].  (list-closed(T;L;f) ∈ ℙ)
Proof
Definitions occuring in Statement : 
list-closed: list-closed(T;L;f)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
list-closed: list-closed(T;L;f)
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
so_apply: x[s]
Lemmas referenced : 
l_all_wf, 
l_member_wf, 
list_wf, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
Error :lambdaEquality_alt, 
applyEquality, 
setElimination, 
rename, 
hypothesis, 
Error :setIsType, 
Error :universeIsType, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
Error :functionIsType, 
Error :inhabitedIsType, 
Error :isect_memberEquality_alt, 
Error :isectIsTypeImplies, 
instantiate, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[f:T  {}\mrightarrow{}  (T  List)].    (list-closed(T;L;f)  \mmember{}  \mBbbP{})
Date html generated:
2019_06_20-PM-01_50_47
Last ObjectModification:
2019_05_13-PM-03_36_23
Theory : list_1
Home
Index