Nuprl Lemma : list_accum_as_reduce

[T,A:Type]. ∀[f:A ⟶ T ⟶ A].
  ∀[L:T List]. ∀[a0:A].
    (accumulate (with value and list item x):
      f[a;x]
     over list:
       L
     with starting value:
      a0)
    reduce(λx,a. f[a;x];a0;L)
    ∈ A) 
  supposing ∀a:A. ∀x1,x2:T.  (f[f[a;x1];x2] f[f[a;x2];x1] ∈ A)


Proof




Definitions occuring in Statement :  reduce: reduce(f;k;as) list_accum: list_accum list: List uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s1;s2] all: x:A. B[x] lambda: λx.A[x] function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a so_lambda: λ2x.t[x] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] so_apply: x[s] implies:  Q all: x:A. B[x] top: Top squash: T prop: true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q
Lemmas referenced :  list_induction uall_wf equal_wf list_accum_wf reduce_wf list_wf list_accum_nil_lemma reduce_nil_lemma list_accum_cons_lemma reduce_cons_lemma squash_wf true_wf iff_weakening_equal all_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality cumulativity applyEquality functionExtensionality hypothesis independent_functionElimination dependent_functionElimination isect_memberEquality voidElimination voidEquality lambdaFormation rename imageElimination equalityTransitivity equalitySymmetry because_Cache natural_numberEquality imageMemberEquality baseClosed universeEquality independent_isectElimination productElimination axiomEquality functionEquality

Latex:
\mforall{}[T,A:Type].  \mforall{}[f:A  {}\mrightarrow{}  T  {}\mrightarrow{}  A].
    \mforall{}[L:T  List].  \mforall{}[a0:A].
        (accumulate  (with  value  a  and  list  item  x):
            f[a;x]
          over  list:
              L
          with  starting  value:
            a0)
        =  reduce(\mlambda{}x,a.  f[a;x];a0;L)) 
    supposing  \mforall{}a:A.  \mforall{}x1,x2:T.    (f[f[a;x1];x2]  =  f[f[a;x2];x1])



Date html generated: 2017_04_17-AM-07_37_44
Last ObjectModification: 2017_02_27-PM-04_11_33

Theory : list_1


Home Index