Nuprl Lemma : list_accum_as_reduce
∀[T,A:Type]. ∀[f:A ⟶ T ⟶ A].
  ∀[L:T List]. ∀[a0:A].
    (accumulate (with value a and list item x):
      f[a;x]
     over list:
       L
     with starting value:
      a0)
    = reduce(λx,a. f[a;x];a0;L)
    ∈ A) 
  supposing ∀a:A. ∀x1,x2:T.  (f[f[a;x1];x2] = f[f[a;x2];x1] ∈ A)
Proof
Definitions occuring in Statement : 
reduce: reduce(f;k;as)
, 
list_accum: list_accum, 
list: T List
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s1;s2]
, 
all: ∀x:A. B[x]
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
top: Top
, 
squash: ↓T
, 
prop: ℙ
, 
true: True
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
list_induction, 
uall_wf, 
equal_wf, 
list_accum_wf, 
reduce_wf, 
list_wf, 
list_accum_nil_lemma, 
reduce_nil_lemma, 
list_accum_cons_lemma, 
reduce_cons_lemma, 
squash_wf, 
true_wf, 
iff_weakening_equal, 
all_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
cumulativity, 
applyEquality, 
functionExtensionality, 
hypothesis, 
independent_functionElimination, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
lambdaFormation, 
rename, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
independent_isectElimination, 
productElimination, 
axiomEquality, 
functionEquality
Latex:
\mforall{}[T,A:Type].  \mforall{}[f:A  {}\mrightarrow{}  T  {}\mrightarrow{}  A].
    \mforall{}[L:T  List].  \mforall{}[a0:A].
        (accumulate  (with  value  a  and  list  item  x):
            f[a;x]
          over  list:
              L
          with  starting  value:
            a0)
        =  reduce(\mlambda{}x,a.  f[a;x];a0;L)) 
    supposing  \mforall{}a:A.  \mforall{}x1,x2:T.    (f[f[a;x1];x2]  =  f[f[a;x2];x1])
Date html generated:
2017_04_17-AM-07_37_44
Last ObjectModification:
2017_02_27-PM-04_11_33
Theory : list_1
Home
Index