Nuprl Lemma : list_accum_permute1

[T,A:Type]. ∀[g:T ⟶ A]. ∀[f:A ⟶ A ⟶ A].
  (∀[L:T List]. ∀[x:T]. ∀[n:A].
     (accumulate (with value and list item z):
       f[a;g[z]]
      over list:
        [x L]
      with starting value:
       n)
     accumulate (with value and list item z):
        f[a;g[z]]
       over list:
         [x]
       with starting value:
        n)
     ∈ A)) supposing 
     (Assoc(A;λx,y. f[x;y]) and 
     Comm(A;λx,y. f[x;y]))


Proof




Definitions occuring in Statement :  append: as bs list_accum: list_accum cons: [a b] nil: [] list: List comm: Comm(T;op) assoc: Assoc(T;op) uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s1;s2] so_apply: x[s] lambda: λx.A[x] function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a so_lambda: λ2x.t[x] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] so_apply: x[s] implies:  Q all: x:A. B[x] top: Top append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] squash: T prop: true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q assoc: Assoc(T;op) infix_ap: y comm: Comm(T;op)
Lemmas referenced :  list_induction uall_wf equal_wf list_accum_wf cons_wf append_wf nil_wf list_wf list_accum_cons_lemma list_ind_nil_lemma list_accum_nil_lemma list_ind_cons_lemma squash_wf true_wf iff_weakening_equal assoc_wf comm_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality cumulativity because_Cache hypothesis applyEquality functionExtensionality independent_functionElimination dependent_functionElimination isect_memberEquality voidElimination voidEquality axiomEquality equalityTransitivity equalitySymmetry lambdaFormation rename imageElimination natural_numberEquality imageMemberEquality baseClosed universeEquality independent_isectElimination productElimination functionEquality

Latex:
\mforall{}[T,A:Type].  \mforall{}[g:T  {}\mrightarrow{}  A].  \mforall{}[f:A  {}\mrightarrow{}  A  {}\mrightarrow{}  A].
    (\mforall{}[L:T  List].  \mforall{}[x:T].  \mforall{}[n:A].
          (accumulate  (with  value  a  and  list  item  z):
              f[a;g[z]]
            over  list:
                [x  /  L]
            with  starting  value:
              n)
          =  accumulate  (with  value  a  and  list  item  z):
                f[a;g[z]]
              over  list:
                  L  @  [x]
              with  starting  value:
                n)))  supposing 
          (Assoc(A;\mlambda{}x,y.  f[x;y])  and 
          Comm(A;\mlambda{}x,y.  f[x;y]))



Date html generated: 2017_04_17-AM-07_37_52
Last ObjectModification: 2017_02_27-PM-04_11_45

Theory : list_1


Home Index