Nuprl Lemma : list_eq_imp_sqeq
∀T:Type. ∀L1,L2:T List.  ((L1 = L2 ∈ (T List)) 
⇒ (L1 ~ L2)) supposing T ⊆r Base
Proof
Definitions occuring in Statement : 
list: T List
, 
uimplies: b supposing a
, 
subtype_rel: A ⊆r B
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
base: Base
, 
universe: Type
, 
sqequal: s ~ t
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
uall: ∀[x:A]. B[x]
, 
sq_type: SQType(T)
, 
guard: {T}
, 
prop: ℙ
Lemmas referenced : 
subtype_base_sq, 
list_wf, 
list_subtype_base, 
equal_wf, 
subtype_rel_wf, 
base_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
instantiate, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
independent_isectElimination, 
dependent_functionElimination, 
independent_functionElimination, 
sqequalRule, 
lambdaEquality, 
sqequalAxiom, 
because_Cache, 
universeEquality
Latex:
\mforall{}T:Type.  \mforall{}L1,L2:T  List.    ((L1  =  L2)  {}\mRightarrow{}  (L1  \msim{}  L2))  supposing  T  \msubseteq{}r  Base
Date html generated:
2017_04_17-AM-07_59_13
Last ObjectModification:
2017_02_27-PM-04_30_14
Theory : list_1
Home
Index