Nuprl Lemma : list_eq_imp_sqeq

T:Type. ∀L1,L2:T List.  ((L1 L2 ∈ (T List))  (L1 L2)) supposing T ⊆Base


Proof




Definitions occuring in Statement :  list: List uimplies: supposing a subtype_rel: A ⊆B all: x:A. B[x] implies:  Q base: Base universe: Type sqequal: t equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] uimplies: supposing a member: t ∈ T implies:  Q uall: [x:A]. B[x] sq_type: SQType(T) guard: {T} prop:
Lemmas referenced :  subtype_base_sq list_wf list_subtype_base equal_wf subtype_rel_wf base_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation introduction cut thin instantiate extract_by_obid sqequalHypSubstitution isectElimination cumulativity hypothesisEquality hypothesis independent_isectElimination dependent_functionElimination independent_functionElimination sqequalRule lambdaEquality sqequalAxiom because_Cache universeEquality

Latex:
\mforall{}T:Type.  \mforall{}L1,L2:T  List.    ((L1  =  L2)  {}\mRightarrow{}  (L1  \msim{}  L2))  supposing  T  \msubseteq{}r  Base



Date html generated: 2017_04_17-AM-07_59_13
Last ObjectModification: 2017_02_27-PM-04_30_14

Theory : list_1


Home Index