Nuprl Lemma : listp-not-nil

[A:Type]. ∀[L:A List+].  (L [] ∈ (A List)))


Proof




Definitions occuring in Statement :  listp: List+ nil: [] list: List uall: [x:A]. B[x] not: ¬A universe: Type equal: t ∈ T
Definitions unfolded in proof :  listp: List+ uall: [x:A]. B[x] member: t ∈ T not: ¬A implies:  Q false: False all: x:A. B[x] or: P ∨ Q less_than: a < b squash: T less_than': less_than'(a;b) and: P ∧ Q cons: [a b] top: Top prop: so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  list-cases length_of_nil_lemma product_subtype_list length_of_cons_lemma cons_neq_nil equal-wf-T-base list_wf less_than_wf length_wf set_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep Error :isect_memberFormation_alt,  introduction cut lambdaFormation thin setElimination rename hypothesisEquality extract_by_obid sqequalHypSubstitution isectElimination hypothesis dependent_functionElimination unionElimination imageElimination productElimination voidElimination promote_hyp hypothesis_subsumption isect_memberEquality voidEquality independent_functionElimination baseClosed because_Cache lambdaEquality Error :setIsType,  Error :universeIsType,  natural_numberEquality universeEquality

Latex:
\mforall{}[A:Type].  \mforall{}[L:A  List\msupplus{}].    (\mneg{}(L  =  []))



Date html generated: 2019_06_20-PM-01_27_46
Last ObjectModification: 2018_09_26-PM-05_37_11

Theory : list_1


Home Index