Nuprl Lemma : listp-not-nil
∀[A:Type]. ∀[L:A List+].  (¬(L = [] ∈ (A List)))
Proof
Definitions occuring in Statement : 
listp: A List+
, 
nil: []
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
listp: A List+
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
all: ∀x:A. B[x]
, 
or: P ∨ Q
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
and: P ∧ Q
, 
cons: [a / b]
, 
top: Top
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
list-cases, 
length_of_nil_lemma, 
product_subtype_list, 
length_of_cons_lemma, 
cons_neq_nil, 
equal-wf-T-base, 
list_wf, 
less_than_wf, 
length_wf, 
set_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
Error :isect_memberFormation_alt, 
introduction, 
cut, 
lambdaFormation, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesis, 
dependent_functionElimination, 
unionElimination, 
imageElimination, 
productElimination, 
voidElimination, 
promote_hyp, 
hypothesis_subsumption, 
isect_memberEquality, 
voidEquality, 
independent_functionElimination, 
baseClosed, 
because_Cache, 
lambdaEquality, 
Error :setIsType, 
Error :universeIsType, 
natural_numberEquality, 
universeEquality
Latex:
\mforall{}[A:Type].  \mforall{}[L:A  List\msupplus{}].    (\mneg{}(L  =  []))
Date html generated:
2019_06_20-PM-01_27_46
Last ObjectModification:
2018_09_26-PM-05_37_11
Theory : list_1
Home
Index