Nuprl Lemma : map-rev_wf

[A,B:Type]. ∀[f:A ⟶ B]. ∀[as:A List].  map-rev(f;as) ∈ List supposing value-type(B)


Proof




Definitions occuring in Statement :  map-rev: map-rev(f;L) list: List value-type: value-type(T) uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a map-rev: map-rev(f;L)
Lemmas referenced :  reverse_wf nil_wf value-type_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality functionExtensionality applyEquality hypothesis independent_isectElimination axiomEquality equalityTransitivity equalitySymmetry isect_memberEquality because_Cache functionEquality universeEquality

Latex:
\mforall{}[A,B:Type].  \mforall{}[f:A  {}\mrightarrow{}  B].  \mforall{}[as:A  List].    map-rev(f;as)  \mmember{}  B  List  supposing  value-type(B)



Date html generated: 2017_09_29-PM-05_59_27
Last ObjectModification: 2017_04_26-PM-00_22_23

Theory : list_1


Home Index