Nuprl Lemma : map-rev_wf
∀[A,B:Type]. ∀[f:A ⟶ B]. ∀[as:A List].  map-rev(f;as) ∈ B List supposing value-type(B)
Proof
Definitions occuring in Statement : 
map-rev: map-rev(f;L)
, 
list: T List
, 
value-type: value-type(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
map-rev: map-rev(f;L)
Lemmas referenced : 
reverse_wf, 
nil_wf, 
value-type_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
functionExtensionality, 
applyEquality, 
hypothesis, 
independent_isectElimination, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
isect_memberEquality, 
because_Cache, 
functionEquality, 
universeEquality
Latex:
\mforall{}[A,B:Type].  \mforall{}[f:A  {}\mrightarrow{}  B].  \mforall{}[as:A  List].    map-rev(f;as)  \mmember{}  B  List  supposing  value-type(B)
Date html generated:
2017_09_29-PM-05_59_27
Last ObjectModification:
2017_04_26-PM-00_22_23
Theory : list_1
Home
Index