Nuprl Lemma : map_id
∀[A:Type]. ∀[as:A List].  (map(Id{A};as) = as ∈ (A List))
Proof
Definitions occuring in Statement : 
map: map(f;as)
, 
list: T List
, 
tidentity: Id{T}
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
top: Top
, 
tidentity: Id{T}
, 
identity: Id
, 
squash: ↓T
, 
prop: ℙ
, 
true: True
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
list_induction, 
equal_wf, 
list_wf, 
map_wf, 
tidentity_wf, 
map_nil_lemma, 
nil_wf, 
map_cons_lemma, 
squash_wf, 
true_wf, 
cons_wf, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
cumulativity, 
hypothesis, 
independent_functionElimination, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
lambdaFormation, 
rename, 
applyEquality, 
imageElimination, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
equalityUniverse, 
levelHypothesis, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
independent_isectElimination, 
productElimination, 
axiomEquality
Latex:
\mforall{}[A:Type].  \mforall{}[as:A  List].    (map(Id\{A\};as)  =  as)
Date html generated:
2017_04_14-AM-09_25_40
Last ObjectModification:
2017_02_27-PM-03_59_44
Theory : list_1
Home
Index