Nuprl Lemma : permutation-nil
∀[A:Type]. permutation(A;[];[])
Proof
Definitions occuring in Statement : 
permutation: permutation(T;L1;L2), 
nil: [], 
uall: ∀[x:A]. B[x], 
universe: Type
Definitions unfolded in proof : 
permutation: permutation(T;L1;L2), 
uall: ∀[x:A]. B[x], 
exists: ∃x:A. B[x], 
member: t ∈ T, 
permute_list: (L o f), 
inject: Inj(A;B;f), 
select: L[n], 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
nil: [], 
it: ⋅, 
so_lambda: λ2x y.t[x; y], 
top: Top, 
so_apply: x[s1;s2], 
mklist: mklist(n;f), 
and: P ∧ Q, 
cand: A c∧ B, 
implies: P ⇒ Q, 
prop: ℙ, 
so_lambda: λ2x.t[x], 
subtype_rel: A ⊆r B, 
so_apply: x[s]
Lemmas referenced : 
list_wf, 
all_wf, 
and_wf, 
equal_wf, 
primrec0_lemma, 
base_wf, 
stuck-spread, 
length_of_nil_lemma, 
nil_wf, 
length_wf, 
int_seg_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
dependent_pairFormation, 
lambdaEquality, 
hypothesisEquality, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
voidEquality, 
hypothesis, 
baseClosed, 
independent_isectElimination, 
lambdaFormation, 
isect_memberEquality, 
voidElimination, 
dependent_functionElimination, 
independent_pairFormation, 
functionEquality, 
applyEquality, 
because_Cache, 
universeEquality
Latex:
\mforall{}[A:Type].  permutation(A;[];[])
Date html generated:
2016_05_14-PM-02_18_18
Last ObjectModification:
2016_01_15-AM-07_54_48
Theory : list_1
Home
Index