Nuprl Lemma : permutation-rotate-cons
∀[A:Type]. ∀a:A. ∀as:A List.  permutation(A;[a / as];as @ [a])
Proof
Definitions occuring in Statement : 
permutation: permutation(T;L1;L2)
, 
append: as @ bs
, 
cons: [a / b]
, 
nil: []
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
append: as @ bs
, 
so_lambda: so_lambda(x,y,z.t[x; y; z])
, 
top: Top
, 
so_apply: x[s1;s2;s3]
Lemmas referenced : 
permutation-rotate, 
cons_wf, 
nil_wf, 
list_ind_cons_lemma, 
list_ind_nil_lemma, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
dependent_functionElimination, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
universeEquality
Latex:
\mforall{}[A:Type].  \mforall{}a:A.  \mforall{}as:A  List.    permutation(A;[a  /  as];as  @  [a])
Date html generated:
2016_05_14-PM-02_18_47
Last ObjectModification:
2015_12_26-PM-04_29_10
Theory : list_1
Home
Index