Nuprl Lemma : permutation-rotate-cons

[A:Type]. ∀a:A. ∀as:A List.  permutation(A;[a as];as [a])


Proof




Definitions occuring in Statement :  permutation: permutation(T;L1;L2) append: as bs cons: [a b] nil: [] list: List uall: [x:A]. B[x] all: x:A. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3]
Lemmas referenced :  permutation-rotate cons_wf nil_wf list_ind_cons_lemma list_ind_nil_lemma list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin because_Cache dependent_functionElimination hypothesisEquality hypothesis sqequalRule isect_memberEquality voidElimination voidEquality universeEquality

Latex:
\mforall{}[A:Type].  \mforall{}a:A.  \mforall{}as:A  List.    permutation(A;[a  /  as];as  @  [a])



Date html generated: 2016_05_14-PM-02_18_47
Last ObjectModification: 2015_12_26-PM-04_29_10

Theory : list_1


Home Index