Nuprl Lemma : permutation-rotate

[A:Type]. ∀as,bs:A List.  permutation(A;as bs;bs as)


Proof




Definitions occuring in Statement :  permutation: permutation(T;L1;L2) append: as bs list: List uall: [x:A]. B[x] all: x:A. B[x] universe: Type
Definitions unfolded in proof :  permutation: permutation(T;L1;L2) uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T top: Top exists: x:A. B[x] int_seg: {i..j-} implies:  Q bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a lelt: i ≤ j < k ge: i ≥  decidable: Dec(P) or: P ∨ Q le: A ≤ B satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A prop: less_than: a < b squash: T bfalse: ff sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] less_than': less_than'(a;b) true: True iff: ⇐⇒ Q rev_implies:  Q permute_list: (L f) inject: Inj(A;B;f) nat:
Lemmas referenced :  list_wf lt_int_wf length_wf bool_wf eqtt_to_assert assert_of_lt_int add-member-int_seg2 non_neg_length decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermSubtract_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_subtract_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt subtract_wf add-is-int-iff intformless_wf itermAdd_wf int_formula_prop_less_lemma int_term_value_add_lemma false_wf lelt_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot less_than_wf int_seg_properties int_seg_wf inject_wf append_wf permute_list_wf subtype_rel_dep_function int_seg_subtype le_wf length_append subtype_rel_list top_wf iff_weakening_equal length-append equal-wf-T-base assert_wf decidable__equal_int intformeq_wf int_formula_prop_eq_lemma le_int_wf bnot_wf uiff_transitivity assert_functionality_wrt_uiff bnot_of_lt_int assert_of_le_int list_extensionality mklist_wf length_wf_nat select_wf add_nat_wf int_seg_subtype_nat nat_wf nat_properties mklist_length all_wf squash_wf true_wf mklist_select select_append_front select_append_back add-subtract-cancel
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality hypothesis universeEquality isect_memberEquality voidElimination voidEquality because_Cache dependent_pairFormation lambdaEquality setElimination rename unionElimination equalityElimination productElimination independent_isectElimination natural_numberEquality addEquality dependent_set_memberEquality independent_pairFormation dependent_functionElimination int_eqEquality intEquality computeAll imageElimination pointwiseFunctionality equalityTransitivity equalitySymmetry promote_hyp baseApply closedConclusion baseClosed instantiate independent_functionElimination productEquality functionExtensionality applyEquality imageMemberEquality applyLambdaEquality functionEquality

Latex:
\mforall{}[A:Type].  \mforall{}as,bs:A  List.    permutation(A;as  @  bs;bs  @  as)



Date html generated: 2017_04_17-AM-08_10_46
Last ObjectModification: 2017_02_27-PM-04_38_43

Theory : list_1


Home Index