Nuprl Lemma : mklist_select

[T:Type]. ∀[n:ℕ]. ∀[f:ℕn ⟶ T]. ∀[i:ℕn].  (mklist(n;f)[i] (f i) ∈ T)


Proof




Definitions occuring in Statement :  mklist: mklist(n;f) select: L[n] int_seg: {i..j-} nat: uall: [x:A]. B[x] apply: a function: x:A ⟶ B[x] natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] all: x:A. B[x] top: Top and: P ∧ Q prop: decidable: Dec(P) or: P ∨ Q lelt: i ≤ j < k int_seg: {i..j-} guard: {T} less_than': less_than'(a;b) le: A ≤ B so_apply: x[s] so_lambda: λ2x.t[x] subtype_rel: A ⊆B mklist: mklist(n;f) bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  select: L[n] nil: [] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] bfalse: ff sq_type: SQType(T) bnot: ¬bb assert: b squash: T iff: ⇐⇒ Q rev_implies:  Q subtract: m true: True
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf int_seg_wf decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma nat_wf satisfiable-full-omega-tt int_seg_properties false_wf int_seg_subtype subtype_rel_dep_function primrec-unroll lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int stuck-spread base_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot not_functionality_wrt_uiff assert_wf decidable__lt squash_wf true_wf select_append_front mklist_wf le_wf subtype_rel_function not-le-2 condition-implies-le add-associates minus-add minus-one-mul add-swap minus-one-mul-top add-mul-special zero-mul add-zero add-commutes le-add-cancel2 subtype_rel_self cons_wf lelt_wf nil_wf mklist_length length_wf iff_weakening_equal int_subtype_base decidable__equal_int intformeq_wf int_formula_prop_eq_lemma select_append_back length_of_cons_lemma length_of_nil_lemma subtract-add-cancel select-cons-hd
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :isect_memberFormation_alt,  introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation axiomEquality functionEquality unionElimination because_Cache Error :universeIsType,  universeEquality cumulativity computeAll productElimination isect_memberFormation applyEquality equalityElimination equalityTransitivity equalitySymmetry baseClosed promote_hyp instantiate imageElimination dependent_set_memberEquality addEquality minusEquality multiplyEquality functionExtensionality imageMemberEquality

Latex:
\mforall{}[T:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[f:\mBbbN{}n  {}\mrightarrow{}  T].  \mforall{}[i:\mBbbN{}n].    (mklist(n;f)[i]  =  (f  i))



Date html generated: 2019_06_20-PM-01_31_32
Last ObjectModification: 2018_09_26-PM-06_08_54

Theory : list_1


Home Index