Nuprl Lemma : mklist_select
∀[T:Type]. ∀[n:ℕ]. ∀[f:ℕn ⟶ T]. ∀[i:ℕn]. (mklist(n;f)[i] = (f i) ∈ T)
Proof
Definitions occuring in Statement :
mklist: mklist(n;f)
,
select: L[n]
,
int_seg: {i..j-}
,
nat: ℕ
,
uall: ∀[x:A]. B[x]
,
apply: f a
,
function: x:A ⟶ B[x]
,
natural_number: $n
,
universe: Type
,
equal: s = t ∈ T
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
nat: ℕ
,
implies: P
⇒ Q
,
false: False
,
ge: i ≥ j
,
uimplies: b supposing a
,
not: ¬A
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
all: ∀x:A. B[x]
,
top: Top
,
and: P ∧ Q
,
prop: ℙ
,
decidable: Dec(P)
,
or: P ∨ Q
,
lelt: i ≤ j < k
,
int_seg: {i..j-}
,
guard: {T}
,
less_than': less_than'(a;b)
,
le: A ≤ B
,
so_apply: x[s]
,
so_lambda: λ2x.t[x]
,
subtype_rel: A ⊆r B
,
mklist: mklist(n;f)
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
uiff: uiff(P;Q)
,
ifthenelse: if b then t else f fi
,
select: L[n]
,
nil: []
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
,
bfalse: ff
,
sq_type: SQType(T)
,
bnot: ¬bb
,
assert: ↑b
,
squash: ↓T
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
subtract: n - m
,
true: True
Lemmas referenced :
nat_properties,
full-omega-unsat,
intformand_wf,
intformle_wf,
itermConstant_wf,
itermVar_wf,
intformless_wf,
int_formula_prop_and_lemma,
int_formula_prop_le_lemma,
int_term_value_constant_lemma,
int_term_value_var_lemma,
int_formula_prop_less_lemma,
int_formula_prop_wf,
ge_wf,
less_than_wf,
int_seg_wf,
decidable__le,
subtract_wf,
intformnot_wf,
itermSubtract_wf,
int_formula_prop_not_lemma,
int_term_value_subtract_lemma,
nat_wf,
satisfiable-full-omega-tt,
int_seg_properties,
false_wf,
int_seg_subtype,
subtype_rel_dep_function,
primrec-unroll,
lt_int_wf,
bool_wf,
eqtt_to_assert,
assert_of_lt_int,
stuck-spread,
base_wf,
eqff_to_assert,
equal_wf,
bool_cases_sqequal,
subtype_base_sq,
bool_subtype_base,
assert-bnot,
not_functionality_wrt_uiff,
assert_wf,
decidable__lt,
squash_wf,
true_wf,
select_append_front,
mklist_wf,
le_wf,
subtype_rel_function,
not-le-2,
condition-implies-le,
add-associates,
minus-add,
minus-one-mul,
add-swap,
minus-one-mul-top,
add-mul-special,
zero-mul,
add-zero,
add-commutes,
le-add-cancel2,
subtype_rel_self,
cons_wf,
lelt_wf,
nil_wf,
mklist_length,
length_wf,
iff_weakening_equal,
int_subtype_base,
decidable__equal_int,
intformeq_wf,
int_formula_prop_eq_lemma,
select_append_back,
length_of_cons_lemma,
length_of_nil_lemma,
subtract-add-cancel,
select-cons-hd
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
Error :isect_memberFormation_alt,
introduction,
cut,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
hypothesis,
setElimination,
rename,
intWeakElimination,
lambdaFormation,
natural_numberEquality,
independent_isectElimination,
approximateComputation,
independent_functionElimination,
dependent_pairFormation,
lambdaEquality,
int_eqEquality,
intEquality,
dependent_functionElimination,
isect_memberEquality,
voidElimination,
voidEquality,
sqequalRule,
independent_pairFormation,
axiomEquality,
functionEquality,
unionElimination,
because_Cache,
Error :universeIsType,
universeEquality,
cumulativity,
computeAll,
productElimination,
isect_memberFormation,
applyEquality,
equalityElimination,
equalityTransitivity,
equalitySymmetry,
baseClosed,
promote_hyp,
instantiate,
imageElimination,
dependent_set_memberEquality,
addEquality,
minusEquality,
multiplyEquality,
functionExtensionality,
imageMemberEquality
Latex:
\mforall{}[T:Type]. \mforall{}[n:\mBbbN{}]. \mforall{}[f:\mBbbN{}n {}\mrightarrow{} T]. \mforall{}[i:\mBbbN{}n]. (mklist(n;f)[i] = (f i))
Date html generated:
2019_06_20-PM-01_31_32
Last ObjectModification:
2018_09_26-PM-06_08_54
Theory : list_1
Home
Index