Nuprl Lemma : select_append_front

[T:Type]. ∀[as,bs:T List]. ∀[i:ℕ||as||].  (as bs[i] as[i] ∈ T)


Proof




Definitions occuring in Statement :  select: L[n] length: ||as|| append: as bs list: List int_seg: {i..j-} uall: [x:A]. B[x] natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  member: t ∈ T uall: [x:A]. B[x] so_lambda: λ2x.t[x] int_seg: {i..j-} uimplies: supposing a sq_stable: SqStable(P) implies:  Q lelt: i ≤ j < k and: P ∧ Q squash: T top: Top all: x:A. B[x] exists: x:A. B[x] subtype_rel: A ⊆B nat: so_apply: x[s] prop: append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] select: L[n] nil: [] it: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] false: False guard: {T} le: A ≤ B ge: i ≥  subtract: m uiff: uiff(P;Q) nat_plus: + less_than: a < b less_than': less_than'(a;b) true: True not: ¬A decidable: Dec(P) or: P ∨ Q sq_type: SQType(T) cons: [a b] iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  int_seg_wf length_wf list_wf list_induction all_wf equal_wf select_wf append_wf sq_stable__le length-append non_neg_length length_wf_nat nat_wf set_subtype_base le_wf int_subtype_base length_of_nil_lemma list_ind_nil_lemma stuck-spread base_wf less_than_transitivity1 less_than_irreflexivity length_of_cons_lemma list_ind_cons_lemma add_functionality_wrt_le subtract_wf le_reflexive minus-one-mul zero-add one-mul add-mul-special add-associates two-mul add-commutes mul-distributes-right zero-mul not-lt-2 minus-one-mul-top add-swap omega-shadow less_than_wf mul-distributes minus-add mul-commutes mul-associates mul-swap add-zero less-iff-le le-add-cancel-alt int_seg_properties nat_properties decidable__lt decidable__int_equal subtype_base_sq false_wf not-equal-2 le-add-cancel condition-implies-le minus-zero squash_wf true_wf length_append subtype_rel_list top_wf iff_weakening_equal not-equal-implies-less subtype_rel_self not-le-2 decidable__le le-add-cancel2 minus-minus lelt_wf select_cons_tl
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin natural_numberEquality cumulativity hypothesisEquality hypothesis because_Cache universeEquality isect_memberFormation sqequalRule isect_memberEquality axiomEquality lambdaEquality setElimination rename independent_isectElimination independent_functionElimination productElimination imageMemberEquality baseClosed imageElimination voidElimination voidEquality lambdaFormation dependent_pairFormation sqequalIntensionalEquality applyEquality intEquality equalityTransitivity equalitySymmetry dependent_functionElimination promote_hyp addEquality multiplyEquality minusEquality dependent_set_memberEquality independent_pairFormation unionElimination instantiate

Latex:
\mforall{}[T:Type].  \mforall{}[as,bs:T  List].  \mforall{}[i:\mBbbN{}||as||].    (as  @  bs[i]  =  as[i])



Date html generated: 2017_04_14-AM-08_38_21
Last ObjectModification: 2017_02_27-PM-03_29_42

Theory : list_0


Home Index