Nuprl Lemma : select-cons-hd

[a,as:Top]. ∀[i:ℤ].  [a as][i] supposing i ≤ 0


Proof




Definitions occuring in Statement :  select: L[n] cons: [a b] uimplies: supposing a uall: [x:A]. B[x] top: Top le: A ≤ B natural_number: $n int: sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a select: L[n] subtract: m cons: [a b] all: x:A. B[x] decidable: Dec(P) or: P ∨ Q implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q less_than: a < b less_than': less_than'(a;b) top: Top true: True squash: T not: ¬A false: False prop: bfalse: ff exists: x:A. B[x] sq_type: SQType(T) guard: {T} bnot: ¬bb ifthenelse: if then else fi  assert: b le: A ≤ B
Lemmas referenced :  decidable__lt lt_int_wf bool_wf eqtt_to_assert assert_of_lt_int less_than_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot not-lt-2 add_functionality_wrt_le add-zero le-add-cancel le_wf top_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality natural_numberEquality hypothesis unionElimination isectElimination lambdaFormation equalityElimination because_Cache productElimination independent_isectElimination lessCases sqequalAxiom isect_memberEquality independent_pairFormation voidElimination voidEquality imageMemberEquality baseClosed imageElimination independent_functionElimination dependent_pairFormation equalityTransitivity equalitySymmetry promote_hyp instantiate cumulativity intEquality

Latex:
\mforall{}[a,as:Top].  \mforall{}[i:\mBbbZ{}].    [a  /  as][i]  \msim{}  a  supposing  i  \mleq{}  0



Date html generated: 2017_04_14-AM-08_36_35
Last ObjectModification: 2017_02_27-PM-03_28_24

Theory : list_0


Home Index