Nuprl Lemma : select_append_back

[T:Type]. ∀[as,bs:T List]. ∀[i:{||as||..||as|| ||bs||-}].  (as bs[i] bs[i ||as||] ∈ T)


Proof




Definitions occuring in Statement :  select: L[n] length: ||as|| append: as bs list: List int_seg: {i..j-} uall: [x:A]. B[x] subtract: m add: m universe: Type equal: t ∈ T
Definitions unfolded in proof :  member: t ∈ T uall: [x:A]. B[x] so_lambda: λ2x.t[x] int_seg: {i..j-} uimplies: supposing a all: x:A. B[x] implies:  Q exists: x:A. B[x] subtype_rel: A ⊆B nat: so_apply: x[s] prop: top: Top lelt: i ≤ j < k and: P ∧ Q append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] le: A ≤ B ge: i ≥  subtract: m nat_plus: + less_than: a < b squash: T less_than': less_than'(a;b) true: True uiff: uiff(P;Q) false: False not: ¬A decidable: Dec(P) or: P ∨ Q cand: c∧ B sq_stable: SqStable(P) iff: ⇐⇒ Q rev_implies:  Q guard: {T}
Lemmas referenced :  int_seg_wf length_wf list_wf list_induction all_wf equal_wf select_wf append_wf non_neg_length length_wf_nat nat_wf set_subtype_base le_wf int_subtype_base length-append subtract_wf length_of_nil_lemma list_ind_nil_lemma length_of_cons_lemma list_ind_cons_lemma add_functionality_wrt_le le_reflexive minus-one-mul zero-add one-mul add-mul-special add-associates two-mul add-commutes mul-distributes-right zero-mul add-swap omega-shadow less_than_wf mul-commutes mul-associates not-le-2 false_wf minus-zero add-zero minus-one-mul-top mul-distributes le-add-cancel less-iff-le minus-add not-lt-2 mul-swap int_seg_properties nat_properties decidable__le decidable__lt squash_wf sq_stable__le condition-implies-le true_wf select_cons_tl length_append subtype_rel_list top_wf iff_weakening_equal le-add-cancel2 minus-minus lelt_wf le-add-cancel-alt add-is-int-iff
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality hypothesis addEquality because_Cache universeEquality isect_memberFormation sqequalRule isect_memberEquality axiomEquality lambdaEquality setElimination rename independent_isectElimination lambdaFormation dependent_pairFormation sqequalIntensionalEquality applyEquality intEquality natural_numberEquality equalityTransitivity equalitySymmetry dependent_functionElimination independent_functionElimination productElimination promote_hyp voidElimination voidEquality multiplyEquality minusEquality dependent_set_memberEquality independent_pairFormation imageMemberEquality baseClosed unionElimination imageElimination productEquality baseApply closedConclusion

Latex:
\mforall{}[T:Type].  \mforall{}[as,bs:T  List].  \mforall{}[i:\{||as||..||as||  +  ||bs||\msupminus{}\}].    (as  @  bs[i]  =  bs[i  -  ||as||])



Date html generated: 2017_04_14-AM-08_38_00
Last ObjectModification: 2017_02_27-PM-03_30_08

Theory : list_0


Home Index