Nuprl Lemma : permutation_functionality_wrt_permutation

[A:Type]
  ∀as1,as2,bs1,bs2:A List.
    (permutation(A;as1;as2)  permutation(A;bs1;bs2)  (permutation(A;as1;bs1) ⇐⇒ permutation(A;as2;bs2)))


Proof




Definitions occuring in Statement :  permutation: permutation(T;L1;L2) list: List uall: [x:A]. B[x] all: x:A. B[x] iff: ⇐⇒ Q implies:  Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q member: t ∈ T guard: {T} prop: rev_implies:  Q
Lemmas referenced :  permutation_inversion permutation_transitivity permutation_wf list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation independent_pairFormation cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_functionElimination independent_functionElimination hypothesis universeEquality

Latex:
\mforall{}[A:Type]
    \mforall{}as1,as2,bs1,bs2:A  List.
        (permutation(A;as1;as2)
        {}\mRightarrow{}  permutation(A;bs1;bs2)
        {}\mRightarrow{}  (permutation(A;as1;bs1)  \mLeftarrow{}{}\mRightarrow{}  permutation(A;as2;bs2)))



Date html generated: 2016_05_14-PM-02_20_10
Last ObjectModification: 2015_12_26-PM-04_28_23

Theory : list_1


Home Index