Nuprl Lemma : permutation_functionality_wrt_permutation
∀[A:Type]
  ∀as1,as2,bs1,bs2:A List.
    (permutation(A;as1;as2) 
⇒ permutation(A;bs1;bs2) 
⇒ (permutation(A;as1;bs1) 
⇐⇒ permutation(A;as2;bs2)))
Proof
Definitions occuring in Statement : 
permutation: permutation(T;L1;L2)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
member: t ∈ T
, 
guard: {T}
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
permutation_inversion, 
permutation_transitivity, 
permutation_wf, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
independent_pairFormation, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
dependent_functionElimination, 
independent_functionElimination, 
hypothesis, 
universeEquality
Latex:
\mforall{}[A:Type]
    \mforall{}as1,as2,bs1,bs2:A  List.
        (permutation(A;as1;as2)
        {}\mRightarrow{}  permutation(A;bs1;bs2)
        {}\mRightarrow{}  (permutation(A;as1;bs1)  \mLeftarrow{}{}\mRightarrow{}  permutation(A;as2;bs2)))
Date html generated:
2016_05_14-PM-02_20_10
Last ObjectModification:
2015_12_26-PM-04_28_23
Theory : list_1
Home
Index