Nuprl Lemma : permutation_transitivity

[A:Type]. ∀as,bs,cs:A List.  (permutation(A;as;bs)  permutation(A;bs;cs)  permutation(A;as;cs))


Proof




Definitions occuring in Statement :  permutation: permutation(T;L1;L2) list: List uall: [x:A]. B[x] all: x:A. B[x] implies:  Q universe: Type
Definitions unfolded in proof :  permutation: permutation(T;L1;L2) uall: [x:A]. B[x] all: x:A. B[x] implies:  Q exists: x:A. B[x] and: P ∧ Q member: t ∈ T top: Top prop: subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) cand: c∧ B compose: g inject: Inj(A;B;f) int_seg: {i..j-} lelt: i ≤ j < k guard: {T} squash: T true: True iff: ⇐⇒ Q rev_implies:  Q less_than: a < b
Lemmas referenced :  permute_list_length equal_wf length_wf list_wf compose_wf int_seg_wf subtype_rel_dep_function int_seg_subtype false_wf decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermVar_wf intformeq_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_formula_prop_wf subtype_rel_self int_seg_properties decidable__lt intformless_wf int_formula_prop_less_lemma lelt_wf squash_wf true_wf permute_permute_list permute_list_wf iff_weakening_equal inject_wf exists_wf and_wf le_wf subtype_rel_weakening ext-eq_weakening
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation lambdaFormation sqequalHypSubstitution productElimination thin cut hypothesis introduction extract_by_obid isectElimination hypothesisEquality isect_memberEquality voidElimination voidEquality because_Cache hyp_replacement equalitySymmetry applyLambdaEquality intEquality cumulativity promote_hyp dependent_set_memberEquality equalityTransitivity dependent_pairFormation natural_numberEquality applyEquality lambdaEquality independent_isectElimination independent_pairFormation dependent_functionElimination unionElimination int_eqEquality computeAll functionExtensionality setElimination rename imageElimination equalityUniverse levelHypothesis imageMemberEquality baseClosed universeEquality independent_functionElimination productEquality functionEquality instantiate

Latex:
\mforall{}[A:Type].  \mforall{}as,bs,cs:A  List.    (permutation(A;as;bs)  {}\mRightarrow{}  permutation(A;bs;cs)  {}\mRightarrow{}  permutation(A;as;cs))



Date html generated: 2017_04_17-AM-08_11_11
Last ObjectModification: 2017_02_27-PM-04_38_18

Theory : list_1


Home Index