Nuprl Lemma : remove-combine-cons

[T:Type]. ∀[cmp:T ⟶ ℤ]. ∀[x:T]. ∀[l:T List].
  (remove-combine(cmp;[x l]) if (cmp =z 0) then l
  if 0 <cmp then [x l]
  else [x remove-combine(cmp;l)]
  fi )


Proof




Definitions occuring in Statement :  remove-combine: remove-combine(cmp;l) cons: [a b] list: List ifthenelse: if then else fi  lt_int: i <j eq_int: (i =z j) uall: [x:A]. B[x] apply: a function: x:A ⟶ B[x] natural_number: $n int: universe: Type sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T remove-combine: remove-combine(cmp;l) all: x:A. B[x] so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3] has-value: (a)↓ uimplies: supposing a
Lemmas referenced :  list_ind_cons_lemma value-type-has-value int-value-type list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis callbyvalueReduce isectElimination intEquality independent_isectElimination applyEquality hypothesisEquality sqequalAxiom because_Cache functionEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[cmp:T  {}\mrightarrow{}  \mBbbZ{}].  \mforall{}[x:T].  \mforall{}[l:T  List].
    (remove-combine(cmp;[x  /  l])  \msim{}  if  (cmp  x  =\msubz{}  0)  then  l
    if  0  <z  cmp  x  then  [x  /  l]
    else  [x  /  remove-combine(cmp;l)]
    fi  )



Date html generated: 2016_05_14-PM-02_42_23
Last ObjectModification: 2015_12_26-PM-02_42_34

Theory : list_1


Home Index